
SPL to HP C/XL Migration Guide

HP 3000 MPE/iX Computer Systems

Edition 2
Manufacturing Part Number: 30231-90001
E1089

U.S.A. October 1989

Notice
The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights reserved. Reproduction, adaptation, or translation
without prior written permission is prohibited, except as allowed under
the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.
Rights for non-DOD U.S. Government Departments and Agencies are
as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments
UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1989 by Hewlett-Packard Company
2

P-1

SPL to HP C/XL Migration Guide

SPL to HP C/XL Migration Guide

Printed in U.S.A.

900 Series HP 3000 Computer Systems
HP Part No. 30231-90001
Edition Second Edition
Printed Oct 1989
E1089

Printing History

The following table lists the various printings of this manual, together
with the respective release date for each edition or update. The
software code (Product VUF) printed alongside the release date indicates
the version, update, and fix level of the software product at the time
the manual edition or update was issued. Many software updates and fixes
do not require changes to the manual. Therefore, do not expect a
one-to-one correspondence between product updates and manual editions or
updates.

Edition Number Release Date Product VUF
--

First Edition February 1989 SPL 32100A.08.07
 HP C/XL 31506A.00.02

Second Edition October 1989 SPL 32100A.08.09
 HP C/XL 31506A.02.03

p- 2

Additional Documentation

The following publications provide information that can help you migrate
SPL programs to HP C/XL.

| |
| Number to Use to Manual Manual Title |
| Order Manual Part Number |
30000-90024 30000-90024 Systems Programming Language Reference Manual
30000-90025 30000-90025 Systems Programming Language Textbook

| |
| 31506-60001 92434-90001 HP C Reference Manual |
| |
| 31506-60001 31506-90001 HP C/XL Reference Manual Supplement |
| |
| 31506-60001 30026-90001 HP C/XL Library Reference Manual |
| |
| 31506-60002 92434-90002 HP C Programmer's Guide |
30367-60003 30367-90007 Migration Process Guide
30367-60004 30367-90005 Introduction to MPE XL for MPE V Programmers
32650-60002 32650-90003 MPE XL Commands Reference Manual
32650-60013 32650-90028 MPE XL Intrinsics Reference Manual
32650-60030 32650-90014 Switch Programming User's Guide
31502-60006 31502-90002 HP Pascal Programmer's Guide

P-3

Preface

The SPL to HP C/XL Migration Guide describes how to convert SPL programs
to HP C/XL. It is intended for experienced SPL programmers who are also
acquainted with the C language.

The guide is organized to parallel the Systems Programming Language
Reference Manual . Chapter 2 of this guide corresponds to chapter 1 of
the reference manual, and so forth. The topics are presented in the same
order.

Section Description

Chapter 1 Provides a general overview of the migration process.

Chapter 2 Highlights the differences between the SPL and HP C/XL
 source formats.

Chapter 3 Describes the differences in data storage formats,
 constants, identifiers, arrays, and pointers.

Chapter 4 Describes the differences in global declarations.

Chapter 5 Describes conversions for SPL arithmetic and logical
 expressions, and assignment, MOVE, and SCAN
 statements.

Chapter 6 Describes conversions for SPL program control
 statements.

Chapter 7 Suggests some HP C/XL alternatives for SPL ASSEMBLE
 statements.

Chapter 8 Describes the conversions required for SPL procedures,
 local declarations, and subroutines.

Chapter 9 Discusses the conversion of SPL input/output
intrinsics to HP C/XL standard functions that perform

 analogous operations.

Chapter 10 Describes the differences between the SPL compiler
 commands and the HP C/XL compiler directives.

Chapter 11 Discusses a method for converting SPL programs into HP
 C/XL.

Appendix A Lists SPL procedures that are used as a first step
toward converting to the HP C/XL macros and functions

 listed in Appendix B.

Appendix B Lists HP C/XL functions that emulate special features
 of the SPL language.

p- 4

Conventions

This section discusses the notation conventions followed in this manual.
"Syntax" deals with the notation used in syntax diagrams. "General"
discusses other aspects of textual notation and practices.
Syntax

Notation Description

computer Letters, digits, and special characters displayed in
 "computer" type are required and should be entered

exactly as shown. SPL permits keywords to be upper- or
 lowercase. HP C/XL differentiates uppercase from

lowercase. In the following example, both the command
 and the trailing semicolon are required:

 EXIT ;

italics Characters in " italics ", typically words or compound
 words, denote elements that you must replace with

appropriate values. In the following example, you must
replace filename with the name of the file you want to

 close:

 CLOSE filename

[element] Brackets enclose optional elements.+ When one or more
elements are stacked inside brackets, you may select any

 one or none of the elements. For example:

 [A]
 [B] [C]

You can select "A" or "B" or neither, and optionally add
 "C".

When brackets are nested, parameters in inner brackets
 can be specified only if parameters in outer brackets
 are specified. For example:

 [X1 [, [X2] [, X3]]]

 can be entered as any of:

blank
 X1
 X1,
 X1,X2
 X1,X2,X3
 X1,,X3

{ element } Braces enclose required elements. When one or more

P-5

elements are stacked within braces, you must select one
 of those elements. For example:

 {A}
 {B}
 {C}
 You must select "A" or "B" or "C".

Notation Description

[...] A horizontal ellipsis enclosed in brackets indicates
that the previous element, usually a selection enclosed

 in brackets or braces, may be repeated one or more
times, separated, if necessary, by spaces. For example:

 [, itemname] [...]

[,...] If the ellipsis is preceded by a punctuation mark, such
 as comma or semicolon, you must use that character to
 separate repetitions of the element.

 [item1]
 [item2] [,...]

" [" "] " Where special characters that have syntactic meaning,
 such as the square brackets above, are required to be
 entered as text, they are shown in "computer" type,

enclosed in "right-hand" quotation marks. The syntax:

arrayname " [" subscript [,...] "] "

 represents the following examples:

 ABC[25,77]
 Aardvark [noselength]
General

Notation Description

...: Within examples, vertical and horizontal ellipses show
 where portions of the example have been omitted.

bit n The bits in bytes, bit-fields, words, etc. are numbered
from left to right from zero. In a 16-bit SPL "word",
bit zero is the high-order left-hand bit and bit 15 is

 the low-order right-hand bit. In a 32-bit HP C/XL
"word", bit zero is the high-order left-hand bit and bit

 31 is the low-order right-hand bit.

p- 6

1-1

Chapter 1 SPL Migration

System Programming Language (SPL) is a language that was developed for
the older HP 3000 computer systems, which currently run under the MPE V
operating system.

HP C/XL is the Hewlett-Packard implementation of the C programming
language on the HP Precision Architecture 900 Series HP 3000 computer
systems, which run under the MPE XL operating system.

This guide will use the terms MPE V and MPE XL to refer to the two
distinct architectures and operating environments.

SPL was designed for systems programmers, in order to give them close
control over the hardware stack, registers, and segmentation of the MPE
V and earlier operating environments. Many SPL features are
hardware-dependent--designed for specific machine instructions and
registers. Most SPL special features are inappropriate for the MPE XL
environment. Many of them are used chiefly to deal with the lack of
space in the MPE V data area, a problem that largely disappears in the
MPE XL environment.

For a general discussion of MPE V to MPE XL migration issues, please read
the Migration Process Guide and the Switch Programming User's Guide .

Migration Choices

Many programs and systems developed and written in SPL are difficult to
replace. To solve this problem, MPE XL offers a range of migration
options for SPL programs:

 * Emulate the MPE V environment with Compatibility Mode.

 * Convert the program code with the Object Code Translator.

* Convert source programs to a Native Mode language implemented on MPE
 XL machines.

Compatibility Mode

SPL programs may be compiled and run on MPE XL machines immediately,
without code changes. They automatically run in Compatibility Mode,
which emulates the MPE V environment. However, emulation lowers
efficiency, sometimes dramatically.

1-2

CAUTION Applications running in Compatibility Mode must not execute
 privileged instructions; they must call only documented,
 callable MPE V/E or subsystem intrinsics. However, they may

enter Privileged Mode and may call MPE V/E privileged intrinsics
 from Compatibility Mode.

Object Code Translation

The object code translation program, OCT, which is available on MPE XL
machines, translates many of the MPE V instructions in a compiled object
file into MPE XL instructions. While such a translated program must
still run in Compatibility Mode, it may run faster than an untranslated
program. In general, OCT provides higher performance at the expense of a
larger program size and greater difficulty in debugging. OCT may be
executed with the MPE XL :OCTCOMP command. See the MPE XL Commands
Reference Manual for details.

Conversion to Another Language

Compatibility Mode and object code translation may be sufficient for
many
applications. However, any program that requires maximum efficiency or
is enhanced and upgraded regularly should be converted to a language
that
generates Native Mode instructions on MPE XL machines. HP C/XL is the
recommended migration language. COBOL II/XL, HP FORTRAN 77/XL, and HP
Pascal/XL, are suitable alternatives.

This migration guide addresses the option of converting SPL source code
to HP C/XL.

Converting SPL to HP C/XL

SPL is a procedure-oriented language. The basic structure of SPL and
most of the language constructs are machine-independent. However,
machine-dependent constructs are embedded within SPL to allow systems
programmers to optimize programs and access system-specific hardware
features.

The C language is a portable, machine-independent programming language.
Like SPL, C is a procedure-oriented language that uses many similar
constructs. This similarity, while making C a good candidate for
converting SPL programs, initially may cause some difficulties for
experienced SPL programmers. For example: C uses "=" as the assignment
operator; SPL uses ":="; C uses "==" as the equality operator; SPL uses
"=".

HP C/XL is the Hewlett-Packard implementation of C on MPE XL machines.

1-1

HP C/XL is a highly portable version of the C language.

SPL programs that rarely use machine-dependent constructs are easy to
translate to HP C/XL. Consequently, the first step in any SPL to HP C/XL
conversion is to isolate, and, if possible, eliminate the use of
machine-dependent SPL features. Machine-dependent SPL features include
direct reference to hardware registers, assembly instructions, and
explicit stack manipulation. Many of these operations are used to
optimize the MPE V environment and can be easily rewritten in higher
level SPL constructs that can be converted directly to HP C/XL.

Machine-dependent SPL features allow access to extra data segments to
overcome the limited address space on MPE V machines. This restriction
is not present in MPE XL, so these routines may be simplified or
eliminated. Such changes can be made (but not tested) in the MPE V
environment.

SPL programs sometimes rely upon the hardware stack environment of MPE V
machines. MPE XL machines do not have hardware stacks. Although you
could emulate a stack in software, using HP C/XL constructs and data
structures, usually the better choice is to redesign the algorithm and
rewrite the affected program.

Some high-level SPL constructs can be rewritten using alternative SPL
operations that are easier to translate into HP C/XL. For example, SPL
allows subroutines to be local to procedures. Although HP C/XL does
allow nested blocks (compound statements with local data), HP C/XL does
not allow any nesting of functions. Rewriting an SPL program to
eliminate subroutines, either by placing the code inline, or by
converting the SPL subroutine into an SPL procedure, will allow direct
translation of the program structure into HP C/XL.

Conversion Strategy

This guide describes a four-step procedure for converting an SPL program
to HP C/XL:

1. Remove as many hardware-dependent SPL constructs as possible from
 the SPL program. Recompile and test.

2. Rewrite other SPL constructs into forms that convert easily to HP
 C/XL. Recompile and test.

3. Convert the SPL source code to HP C/XL source code, rewriting as
 little as possible. Compile and test.

 4. Make improvements in the HP C/XL source code.

This procedure is described in detail in Chapter 11.

For large programs, you may consider a phased migration. You could
convert the main program first and use the switch subsystem to access the

1-4

remaining SPL code (e.g., in subprograms). See the Switch Programming
User's Guide for details.

The following chapters parallel the Systems Programming Language
Reference Manual , section for section, discussing the conversion issues
involved.

Major Considerations

MPE V and MPE XL have two areas of incompatibility that may make it
difficult for you to convert SPL programs to HP C/XL:

 * The representation of floating-point numbers

 * Data storage alignment

Floating-Point Numbers

MPE XL floating-point numbers are represented in the industry-standard
IEEE format. This format is different from the MPE V format in bit
layout, range, and precision. (Range is governed by the size of the
exponent; precision is governed by the size of the fraction.)

MPE V 32-bit floating-point numbers:

 Bit layout: 1-bit sign, 9-bit exponent, 22-bit fraction
 Nonzero range: 8.63617x10-78 to 1.157921x1077

MPE XL 32-bit floating-point numbers:

 Bit layout: 1-bit sign, 8-bit exponent, 23-bit fraction
 Nonzero range: 1.754944x10-38 to 3.4028235x1038

MPE V 64-bit floating-point numbers:

 Bit layout: 1-bit sign, 9-bit exponent, 54-bit fraction
 Nonzero range: 8.63618555094445x10-78 to 1.157920892373162x1077

MPE XL 64-bit floating-point numbers:

 Bit layout: 1-bit sign, 11-bit exponent, 52-bit fraction
Nonzero range: 2.2250738585072014x10-308to 1.7976931348623157x10308

MPE XL 32-bit floating point has greater precision but a smaller range
than MPE V. Thus, it is possible to have a valid MPE V floating-point
number that is not representable in MPE XL floating point.

On the other hand, MPE XL 64-bit floating-point numbers can handle a much
higher range than MPE V 32-bit or 64-bit floating point, but they have
less precision than MPE V 64-bit floating point.

The data storage formats are quite different, corresponding to the bit

1-1

representations noted above. Floating-point data stored on disk must be
converted or replaced if the programs are converted to HP C/XL.

The MPE XL intrinsic HPFPCONVERT may be used to convert floating point
data to and from the various representations. See the MPE XL Intrinsics
Reference Manual for details.

Data Storage Alignment

On MPE V, a data item whose size is two bytes or greater is aligned on a
two-byte boundary.

On MPE XL, a data item is aligned on a boundary not less than the size of
the data item itself, that is, a multiple of 1, 2, 4, or 8 bytes.

Thus, a character followed by a 64-bit floating-point number would
require 10 bytes in MPE V and 16 bytes in MPE XL.

In MPE V, the character would start at byte 0, there would be one unused
byte, and the floating-point number would start at byte 3. In MPE XL,
the character would start at byte 0, there would be seven unused bytes,
and the floating point number would start at byte 8.

This incompatibility of data storage affects program access to data both
in memory and on disk.

1-6

2- 1

Chapter 2 Program Structure

This chapter discusses conversion issues that correspond to sections in
Chapter 1 of the Systems Programming Language Reference Manual .

Introduction

SPL is particularly designed to access machine-dependent features of the
MPE V operating system. The conversion to HP C/XL requires that these
machine-dependent features be removed.

Conventions

Table 2-1. Bit Numbering

SPL	HP C/XL Equivalent

Bits are numbered left to right,	Not specified.
0 to 15 in a word,	
0 to 31 in a double word, etc.	For convenience, this manual will follow
Bit zero is the "high-order" bit.	the SPL conventions.

An MPE V word is 16 bits long; an MPE XL word is 32 bits. In general,
the word size is not a serious problem in the conversion process, since
corresponding data types are available. Specific considerations are
noted where they apply.

Source Program Format

Table 2-2. Source Program Format

SPL	HP C/XL Equivalent

Records are 80 columns long.	Record lengths are not restricted.

Free field format in columns 1 through 72.	Free field format in all columns.

Columns 73 through 80 may be sequence	Last eight characters of records are
numbers.	interpreted as sequence numbers if ALL

2: 2

| | eight characters are ASCII numeric. |
| | |

Statement labels are identifiers followed	Same as SPL.
by colon (" label :").	

A compilation unit is bracketed by the	A compilation unit has no special
reserved words BEGIN and END and terminated	delimiters. It consists of declarations
with a period (".")	and one or more function definitions.

Compiler commands are denoted by a "$" in	Compiler directives are denoted by a "#" in
column 1.	column 1.

A compiler command line is continued to the	A directive line is continued by having "\"
next line by having "&" as its last	as the last nonblank.
nonblank character.	

Tokens may not be broken across records.	Same as SPL.

Source input is not sensitive to case.	Source input is case sensitive. (Variable
(Variable Var1 is the same as var1.)	Var1 is different from var1.) All HP C/XL
	keywords must appear in lowercase.

Delimiters

Table 2-3. Delimiters

SPL	HP C/XL Equivalent

Blanks and special characters (other than	Similar, except that underscore, "_",
apostophes) act as delimiters to reserved	assumes the role of apostrophe in
words and identifiers. Apostrophes, "'",	identifiers and as a nonseparator. That
may be used in identifiers.	is, change "'" to "_".

Blanks cannot be embedded in reserved	Same as SPL.
words, identifiers, and multicharacter	
tokens, such as ":=", "<<", and ">>".	

Comments

Table 2-4. Comments

SPL	HP C/XL Equivalent

comment:	comment:
COMMENT comment-text ;	/* comment-text */

2- 3

<< comment-text >>	Similar to SPL's << comment-text >>.
! comment-text to end of record	

Program and Subprogram Structure

Table 2-5. Program and Subprogram Structure

SPL	HP C/XL Equivalent

An SPL program consists of a single	An HP C/XL program consists of declarations
BEGIN-END block that contains global	and function definitions. The "main body"
declarations, procedures (which may include	of a program is a function named main.
subroutines), and a main body of	Functions may have local data declarations.
statements. Procedures may have local data	Functions cannot contain subroutines.
declarations; subroutines cannot.	

A subprogram has the same structure as a	A "subprogram" compilation unit has the
main program, except that the block is	same structure as a main program, except
preceded by the compiler command $CONTROL	that it has no main function.
SUBPROGRAM and it has no main body. Outer	
blocks of subprograms are not compiled.	

In general, SPL procedures convert directly to HP C/XL functions.

Hardware Concepts

With the exception of the hardware stack structure, which does not exist
in MPE XL, the concepts of processes and code/data separation are
essentially the same on both MPE V and MPE XL.

Code and Data Segments

Table 2-6. Code and Data Segments

SPL	HP C/XL Equivalent

SPL provides code segmentation and access	HP C/XL provides neither segmentation nor
to the registers and counters (PB, P, and	register access. $CONTROL SEGMENT compiler
PL) that manage program code.	commands must be removed. Register
	references must be recoded.

SPL provides data segmentation and access	HP C/XL provides neither segmentation nor
to the registers (DB, DL, Q, S, and Z) that	register access. Register references must
manage program data.	be recoded.

2: 4

Procedures

Table 2-7. Procedures

SPL	HP C/XL Equivalent

An SPL procedure can be passed parameters,	An HP C/XL function can be passed
either by reference or by value.	parameters, but always by value.
	Pass-by-reference is emulated by explicitly
	passing an address pointer and
	dereferencing that pointer within the
	function. (Array identifiers appear to be
	passed by reference; they are passed as
	pointers.)

Can declare local variables and reference	Same as SPL.
global variables.	

Can return a value.	Same as SPL.

Can call themselves.	Same as SPL.

Can be called from other procedures and	Can be called from other functions and from
from the main block.	the main function.

Can contain local subroutines.	Cannot contain nested functions. The
	closest HP C/XL equivalent is the #define
	macro directive (see "Subroutines" below).

Subroutines

Table 2-8. Subroutines

SPL	HP C/XL Equivalent

Can appear within procedures and globally.	No direct equivalent.

If possible, you should recode SPL subroutines as HP C/XL #define macro
directives, which permit parameters, and result in inline substitution.
Where appropriate (i.e., in functions), limit the scope of a #define
directive with a subsequent #undef directive.

Otherwise, you must recode the SPL subroutine as an HP C/XL independent
function. This can be awkward because variables that were formerly lo-
cal to the procedure and known to the subroutine have to be made avail-
able to the new function. You can make variables available to new

2- 5

functions either by declaring them as global (to all functions) or by
passing them as parameters.

See "SUBROUTINE Declaration".

Intrinsics

Table 2-9.

- --
SPL	HP C/XL Equivalent

System and user-defined intrinsics are	System and user-defined intrinsics are
accessed with the INTRINSIC declaration.	accessed with the #pragma intrinsic and
	#pragma intrinsic_file directives.

A major advantage of HP C/XL is the large number of functions available
in the standard function library. These serve most of the purposes that
an SPL program requires intrinsics for (such as I/O). The library also
includes numerous routines for byte manipulation, input/output, memory
control, and data formatting.

Compound Statements

Table 2-10. Compound Statements

SPL	HP C/XL Equivalent

compound-statement :	compound-statement :
BEGIN [statement] [;...] [;] END	" { " [statement] [...] " } "

Semicolons are not part of statements; they	Semicolons are part of statements; they are
are used to separate statements.	required terminators. "Extra" semicolons
	form null statements, similar to SPL.

Example	Example
BEGIN	{
A := 10 ;	A = 10 ;
B := 17 OR B := 17 ;	B = 17 ;
END	}

In HP C/XL, a compound statement may be a block. That is, it may contain
declarations for data that is local to itself.

2: 6

Entry Points

Table 2-11. Entry Points

SPL	HP C/XL Equivalent

Main programs and procedures may have	No equivalent.
multiple entry points.	

In main programs, you may recode existing SPL entry points by using the
argc, argv, parm, and info parameters of the HP C/XL main function, and
adding a switch statement to jump to the appropriate labels. In HP C/XL,
arguments are passed to these parameters with the "INFO=" and "PARM="
parameters of the MPE XL :RUN command.

In functions, you may add a parameter and use a switch statement to jump
to the "entry" labels.

3- 1

Chapter 3 Basic Elements

This chapter discusses conversion issues that correspond to sections in
Chapter 2 of the Systems Programming Language Reference Manual .

Data Storage Formats

SPL processes six types of data.

Table 3-1. Data Types

SPL	HP C/XL Equivalent

INTEGER	short int

DOUBLE	long int OR int (equivalent in HP C/XL)

REAL	float

LONG	double

BYTE	unsigned char OR unsigned short int
	(depends on usage)

LOGICAL	unsigned short int

The HP C/XL types float, double, unsigned char, and unsigned short int
are not precise equivalents for the SPL types REAL, LONG, BYTE, and
LOGICAL. The differences are described below.

3- 2

INTEGER Format

Table 3-2. INTEGER Format

SPL	HP C/XL Equivalent

Type: INTEGER	Type: short int

16-bit signed integer in two's-complement	Same as SPL.
form.	

Range is -32768 to 32767.	Same as SPL.

DOUBLE Integer Format

Table 3-3. DOUBLE Integer Format

SPL	HP C/XL Equivalent

Type: DOUBLE	Type: long int OR int (equivalent)

32-bit signed integer in two's-complement	Same as SPL.
form.	

Range is -2,147,483,648 to 2,147,483,647.	Same as SPL.

REAL Format

Table 3-4. REAL Format

SPL	HP C/XL Equivalent

Type: REAL	Type: float

32 bits (two words) in MPE V floating-point	32 bits (one word) in IEEE floating-point
format:	format:
1-bit sign, 9-bit exponent, 22-bit	1-bit sign, 8-bit exponent, 23-bit
fraction.	fraction.

Approximate nonzero range:	Approximate nonzero range:
8.63617x10-78 to 1.157921x1077	1.754944x10-38 to 3.4028235x1038

3- 3

CAUTION The numeric ranges AND the data storage formats for SPL and HP
C/XL 32-bit floating-point data are significantly different. If

 your application uses REAL floating-point data that depend on
extreme values, bit manipulation, or file storage, you may have

 a problem in migrating to HP C/XL.

 However, floating-point values may be translated from MPE V
 format to MPE XL format and back with the MPE XL HPFPCONVERT
 intrinsic. See the MPE XL Intrinsics Reference Manual for
 details.

LONG Format

Table 3-5. LONG Format

SPL	HP C/XL Equivalent

Type: LONG	Type: double

64 bits (four words) in MPE V	64 bits (two words) in IEEE floating-point
floating-point format:	format:
1-bit sign, 9-bit exponent, 54-bit	1-bit sign, 11-bit exponent, 52-bit
fraction.	fraction.

Approximate nonzero range:	Approximate nonzero range:
8.63618555094445x10-78	2.2250738585072014x10-308
to 1.157920892373162x1077	to 1.79769313486231x10308

CAUTION The numeric ranges AND the data storage formats for SPL and HP
C/XL 64-bit floating-point data are significantly different. If

 your application uses LONG floating-point data that depend on
 bit manipulation or file storage, you may have a problem in
 migrating to HP C/XL.

 However, floating-point values may be translated from MPE V
 format to MPE XL format and back with the MPE XL HPFPCONVERT
 intrinsic. See the MPE XL Intrinsics Reference Manual for
 details.

3- 4

BYTE Format

Table 3-6. BYTE Format

SPL	HP C/XL Equivalent

Type: BYTE	Type: unsigned char OR unsigned short int
	(depends on usage)

8-bit character stored in high-order byte	8-bit character OR 16-bit unsigned integer
of 16-bit word.	

In SPL BYTE format, characters are stored as 8-bit bytes,two to a 16-bit
word.A single or odd character occupies the high-order byte of the word.

Normally, the HP C/XL unsigned char data type is the correct choice for
conversion of both simple BYTE variables and BYTE arrays.

However, a simple BYTE variable may also be used as a 16-bit quantity in
many places where an INTEGER or LOGICAL data type is accepted. In that
usage, the value is more like an HP C/XL unsigned short int with the
character value in the high-order byte.

In the conversion, such uses need to be clearly identified. If the
variable is used for both 8-bit and 16-bit operations, it would be wise
to divide the uses into separate variables.

LOGICAL Format

Table 3-7. LOGICAL Format

SPL	HP C/XL Equivalent

Type: LOGICAL	Type: unsigned short int

16-bit unsigned integer, ranging from 0 to	Same as SPL.
65535.	

In a conditional test, a LOGICAL, BYTE, or	In a conditional test, a numeric value of
INTEGER value is true if it is odd, that	any type is true if it is nonzero. It is
is, if bit 15 is on. It is false if it is	false if it is zero.
even, that is, if bit 15 is off.	

The logical constant TRUE equals 65535 (all	HP C/XL has no identifiers for true and
16 bits on); FALSE equals 0 (all 16 bits	false. The result of a relational
off).	expression is 1 if true, 0 if false.

3- 5

Constant Types

Table 3-8. Constant Types

SPL	HP C/XL Equivalent

Numeric	Numeric

String	String literal

One-byte string	Character

SPL has two types of constants: numeric and string. You may have to
specify the type of the constant with a modifier to avoid errors when
mixing types.

HP C/XL has four types of constants: integer, floating point, charac-
ter, and enumeration. Type mixing is generally allowed in HP C/XL, so
you do not need to specify types except when you want to control word
size.

NOTE HP C/XL does not permit a leading unary "+" sign, only a unary "-"
 sign.

Integer Constants

Table 3-9. Integer Constants

SPL	HP C/XL Equivalent

Type: INTEGER	Type: short int

integer-constant :	integer-constant :
[sign] integer	[-] integer

3- 6

Double Integer Constants

Table 3-10. Double Integer Constants

SPL	HP C/XL Equivalent

Type: DOUBLE	Type: long int or int

double-integer-constant :	long-integer-constant :
[sign] integer D	[-] integer [L]

In HP C/XL, the L (specifying long int) is optional, since int and long
int are equivalent and occupy 32 bits. The L may be lowercase.

Based Constants

Table 3-11. Based Constants

SPL	HP C/XL Equivalent

Type: INTEGER	Type: short int
DOUBLE	long int or int
LOGICAL	unsigned short int
BYTE	unsigned char OR unsigned short
	int
REAL	float
LONG	double

based-constant :	integer-constant :
[sign] % [(base)] value [type]	[-] 0 octal-digits [L]
	[-] 0X hex-digits [L]
type :	
is D, E, or L (for DOUBLE, REAL, or	Only octal and hexadecimal bases may be
LONG); default is single word, usable as	specified. Numbers are signed decimal by
INTEGER, LOGICAL, or BYTE.	default. The leading character is a zero.
	A trailing L forces a long int constant.
	The L and X may be lowercase.
	Floating point cannot be specified
	directly.

Example:	Example:
%170033 octal	0170033 octal
%(16)F01B D hexadecimal	0xF01B L hexadecimal
%(2)11011011 binary	(No equivalent))

Since HP C/XL can represent only octal, decimal, and hexadecimal values,
based constants must be converted into one of those forms.

3- 7

CAUTION Since MPE XL floating-point format is different from MPE V
floating point, REAL and LONG based constants must be carefully

 translated if they are intended for arithmetic use.

Composite Constants

Table 3-12. Composite Constants

SPL	HP C/XL Equivalent

Type: INTEGER	Type: short int
DOUBLE	long int or int
LOGICAL	unsigned short int
BYTE	unsigned char OR unsigned short
	int
REAL	float
LONG	double

composite-constant :	No direct equivalent.
[sign] " ["length" / "value [,...] "] "	See "Based Constants" above.
[type]	
type	
is D, E, or L (for DOUBLE, REAL, or	
LONG); default is single word usable as	
INTEGER, LOGICAL, or BYTE.	

Example:	Example:
+[3/2,12/%5252] (= %25252)	025252 octal
-[3/2,12/%5252] (= %152526)	-025252 octal

CAUTION Since MPE XL floating-point format is different from MPE V
 floating point, REAL and LONG composite constants must be
 carefully translated if they are intended for arithmetic use.

3- 8

Equated Integers

Table 3-13. Equated Integer Constants

SPL	HP C/XL Equivalent

equated-integer :	defined-constant :
[sign] identifier [D]	[-] identifier

identifier	identifier
is assigned a numeric value in an EQUATE	is assigned a literal value in a #define
declaration. It represents a 16-bit	directive. The literal is inserted at
INTEGER value.	the reference point.
If D is specified, the value is extended on	Note that, while SPL evaluates an equated
the left with zeros to a 32-bit DOUBLE	integer when it is declared, HP C/XL
value.	evaluates the literal when the reference is
	compiled.

See "EQUATE Declaration and Reference".

Real Constants

Table 3-14. Real Constants

SPL	HP C/XL Equivalent

Type: REAL	Type: float

real-constant :	real-constant :	
1. [sign] fixed-point-number [E power]	1. [-] fixed-point-number [E power]	
2. [sign] decimal-integer E power	2. [-] decimal-integer E power	
3. [sign] based	composite-integer E	3. (No equivalent; convert to 1 or 2.)
	The E may be in lowercase.	

CAUTION Since MPE XL floating-point format is different from MPE V
 floating point, REAL based and composite constants must be
 carefully translated if they are intended for arithmetic use.

3- 9

Long Constants

Table 3-15.

SPL	HP C/XL Equivalent

Type: LONG	Type: double

long-constant :	real-constant :	
1. [sign] fixed-point-number L power	1. [-] fixed-point-number [E power];	
2. [sign] decimal-integer L power	2. [-] decimal-integer E power	
3. [sign] based	composite-integer L	3. (No equivalent; convert to 1 or 2.)
	The E may be in lowercase.	

HP C/XL uses the same representation for float and double constants.

CAUTION Since MPE XL floating-point format is different from MPE V
 floating point, LONG based and composite constants must be
 carefully translated if they are intended for arithmetic use.

Logical Constants

Table 3-16. Logical Constants

SPL	HP C/XL Equivalent

Type: LOGICAL	Type: unsigned short int

TRUE (logical value: 65535; integer value:	No direct equivalent. May be specified
-1)	with
	#define TRUE 1

FALSE (zero)	No direct equivalent. May be specified
	with
	#define FALSE 0

INTEGER, LOGICAL, or BYTE constant:	Any numeric constant (including char):
* true if bit 15 is on (value is odd)	* true if value is nonzero.
* false if bit 15 is off (value is even)	* false if value is zero.

3- 10

String Constants

Table 3-17. String Constants

SPL	HP C/XL Equivalent

Type: BYTE	Type: string literal OR unsigned char

string-constant :	string-literal :
" characters "	" characters "

characters	characters
is one or more ASCII characters (up to	is zero or more ASCII characters. A
127). A quotation mark (""") within	quotation mark, """, within characters is
characters is doubled.	represented by the "escape sequence"
	"\"", an apostrophe, "'", by "\'", and a
	backslash, "\", by "\\".

For example, the string	For example, the string
He said, "Hi."	He said, "Hi."
is entered as:	is entered as:
"He said, ""Hi."""	"He said, \"Hi.\""

Characters are stored two to the 16-bit	Characters are stored as a series of 8-bit
word, left justified.	bytes. The string literal is terminated by
	HP C/XL with the ASCII NUL character ('\0',
	numeric value 0). This fact is used by
	many HP C/XL string manipulation functions
	that might be used to emulate SPL string
	operations.

HP C/XL also has a character constant, in the form:

 ' char '

where char is a single character, or a special escape sequence using a
leading "\" character, such as those shown above. Escape sequences can
be used in character and string constants to represent any of the 256
ASCII character codes. Consult the HP C Reference Manual for further
details.

3- 11

Identifiers

Table 3-18. Identifiers

SPL	HP C/XL Equivalent

An identifier consists of one to 15 letters	An identifier consists of one to 255
("A" to "Z" and "a" to "z"), digits ("0" to	letters ("A" to "Z" and "a" to "z"), digits
"9"), and apostrophes ("'"), starting with	("0" to "9", and underscores ("_"),
a letter.	starting with a letter or underscore.

Upper- and lowercase letters are	Upper- and lowercase letters are not
equivalent.	equivalent .
The identifier VAR2 is the same as var2.	The identifier VAR2 is different from var2.

Identifiers longer than 15 characters are	Identifiers longer than 255 characters are
truncated on the right.	invalid.

Change apostrophe, "'", to underscore, "_", in identifiers.

Make sure that any SPL identifiers over 15 characters long do not become
"unique" due to the extra characters. For example, these two
identifiers,

 A23456789012345
 A23456789012345B

are the same in SPL but different in HP C/XL.

Arrays

Table 3-19. Arrays

SPL	HP C/XL Equivalent

Type: Array of simple data type.	Type: Array of simple data type.

Arrays are single-dimensional vectors of	Same as SPL. Arrays may be
contiguous storage.	multi-dimensional, in the sense that arrays
	of arrays can be declared.

Arrays may be located relative to DB, Q, S,	There can be no explicit references to
or P registers.	registers, and no read-only constant
	arrays. (There exists no equivalent to
	SPL's PB-based arrays.)

3- 12

Pointers

Table 3-20. Pointers

SPL	HP C/XL Equivalent

Type: Pointer to simple data type	Type: Pointer to simple data type

A pointer is a 16-bit word containing the	A pointer is a 32-bit word containing the
address of another data item.	address of another data item.

A pointer is declared with the reserved	A pointer is declared by preceding its
word POINTER.	identifier with the "*" unary operator.

A pointer is dereferenced when its	A pointer is dereferenced by preceding its
identifier is used alone.	identifier with the "*" unary operator.

The value of a pointer is referenced by	The value of a pointer is referenced by
preceding its identifier with the "@" unary	using its identifier alone.
operator.	

The address of a data item is obtained by	The address of a data item is obtained by
preceding its identifier with the "@" unary	preceding its identifier with the "&" unary
operator.	operator.

Example:

SPL: HP C/XL:

INTEGER POINTER ptr; short int *ptr; declares ptr as pointer to integer
@ptr := @ivar; ptr = &ivar; assigns address of ivar to ptr
ptr := 3; *ptr = 3; stores 3 in ivar (addressed by ptr)
ptr := ptr + 1; *ptr = *ptr + 1; increments ivar
va1 := ptr; va1 = *ptr; stores value from ivar into va1

3- 13

Labels

Table 3-21. Labels

SPL	HP C/XL Equivalent

A label is an identifier, followed by a	Same as SPL.
colon, that prefixes a statement.	

Can be declared in a LABEL declaration.	Can not be declared.
Does not need to be declared.	

Switches

Table 3-22. Switches

SPL	HP C/XL Equivalent

A switch is an ordered list of labels	Can be emulated with a switch statement.
indexed by an identifier and declared with	
a SWITCH declaration. It uses a GOTO	See "SWITCH Declaration" and "GO TO
statement to transfer to a label, based on	Statement".
an index value.	

3- 14

4-1

Chapter 4 Global Data Declarations

This chapter discusses conversion issues that correspond to sections in
Chapter 3 of the Systems Programming Language Reference Manual .

Types of Declarations

Table 4-1. Declaration Types

SPL	HP C/XL Equivalent

Global declarations occur in the global	Global declarations occur in the outer
declaration section, the first section of a	block, outside function definitions.
program or subprogram.	
	Besides occurring before the first function
	definition, as in SPL, global declarations
	may also occur between function
	definitions.

global-data-declaration :	global-data-declaration :
[GLOBAL] data-declaration	[static] data-declaration

Globally declared identifiers can be	As with SPL, global identifiers can be
accessed from all procedures (and the main	accessed by all functions that follow the
body) in the compilation unit.	declarations in the compilation unit.
	Unlike SPL, an identifier that should be
	known only within the compilation unit
	should be preceded by the static storage
	class specifier.

If an identifier is preceded by the GLOBAL	All globally declared identifiers may be
storage attribute, it may also be	referenced from other compilation units.
referenced from a procedure in a different	In an external unit, a reference to the
compilation unit. In that external unit,	same identifier should be declared with the
the same identifier is declared in the	extern storage class specifier.
local declaration section of a procedure	
with the EXTERNAL storage attribute.	

SPL also allows linking global identifiers	HP C/XL will match up global identifiers
between compilation units by the method of	that are declared in separate units. The
including matching global declarations in	identifiers must be the same in all units
both program and subprograms. All	The unneeded declarations may be deleted.
declarations must be present in the same	
order, including those for identifiers that	
are not used in the subprogram. The data	
types must match; the identifiers may be	
different .	

4-2

SPL data declarations have only three general forms: simple, array, and
pointer. However, this simplicity is enhanced by the powerful ability
to
equivalence data of all types and formats and to develop elaborate
overlay structures.

It is necessary, therefore, to understand the physical relationships
between data elements. Much of that is beyond the scope of this guide.
However, it may be useful to you to construct a diagram of the DB-, Q-,
and S-relative data areas to determine the correct choice for converting
data declarations.

In many cases, you may be able to use HP C/XL pointers in simple
emulation of the SPL declarations. In other cases, the data
relationships may require an HP C/XL union declaration to ensure the
correct interplay of the variables.

In the following sections, the SPL and HP C/XL type syntax elements
refer
to the following simple variable types:

SPL	HP C/XL Equivalent

INTEGER	short int

DOUBLE	long int

LOGICAL	unsigned short int

BYTE	unsigned char OR unsigned short int

REAL	float

LONG	double

The rest of this chapter discusses global declarations. Local and
external declarations are discussed in Chapter 8.

4-3

Simple Variable Declarations

Table 4-2. Simple Variable Declaration

SPL	HP C/XL Equivalent

simple-variable-declaration :	simple-variable-declaration :
[GLOBAL] type variable-defn [,...] ;	[static] type variable-defn [,...] ;

variable-defn :	variable-defn :
1a. variable-id	1a. variable-id
1b. variable-id := initial-value	1b. variable-id = initial-value
2a. variable-id = register	
2b. variable-id = register sign offset	
3a. variable-id = ref-id	
3b. variable-id = ref-id sign offset	

Simple variables in formats 2 and 3 are usually various types of data
equivalences. They may be converted to pointers or union equivalences,
depending on the requirements of the program. See "ARRAY Declaration"
below for further examples.

4-4

ARRAY Declaration

Table 4-3. ARRAY Declaration

SPL	HP C/XL Equivalent

array-declaration :	array-declaration :
[GLOBAL] [type] ARRAY	1b, 1d with lower <> 0.
[global-array-defn ,] [...]	[static] [type]
	array-id " [" cells "] " [init] ;
{ global-array-defn	
init-global-array-defn } ;	
	1a, 1c; 1b, 1d with lower <> 0.
global-array-defn :	[static] [type]
	array-ref " [" cells "] " [init] ;
1a. array-id (lower : upper)	
1b. array-id (lower : upper) = DB	[static] [type] * array-id
2a. array-id (@) = DB	= & array-ref " [" index "] " ;
2b. array-id (@) = DB + offset	init :
	= " { " value [,...] " } "
3a. array-id (*) = DB	
	index :
3b. array-id (*) = DB + offset	is the cell number in array-ref of the
	cell that corresponds to cell zero in the
4a. array-id (@)	SPL array.
4b. array-id (@) = register sign offset	_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
5. array-id (*)	The other SPL formats establish an
	equivalence relative to other declared data
6. array-id (*) = register sign offset	(not just arrays). Depending on their
	actual use, they may be converted to HP
7a. array-id (*) = ref-id	C/XL pointer or union types, or #define
	directives. If their relationships are
7b. array-id (*) = ref-id sign offset	fairly simple, pointers can be used. Some
	suggestions follow:
8. array-id (*) = ref-id (index)	
	2. union
init-global-array-defn :	" { "
1c. array-id (lower : upper)	[type] * array-id ;
:= value-group [,...]	[type] * other-id ;
1d. array-id (lower : upper) = DB	:
:= value-group [,...]	" } "
	4. [type] * array-id
value-group :	
	5. [type] * array-id
{ initial-value	
repeat-factor (initial-value [,...])}	7. [type] * array-id = & ref-id
	8. [type] * array-id
	= & ref-id " [" index "] "

4-5

Default type: LOGICAL	Default type: int (= long int)

Array declarations specify one-dimensional	Same as SPL.
vectors of subscripted variables.	

Array subscript declarations and references	Array subscript declarations and references
use parentheses, "()"	use brackets, "[]"

An array identifier with no subscript	An array identifier with no subscript is a
implies a subscript of zero. It is	pointer to cell zero. It is not equivalent
equivalent to array-id (0).	to array-id [0].

Array declarations which allocate space may	The lower bound of HP C/XL arrays is always
specify a lower bound other than zero,	zero.
subject to certain restrictions.	
	Therefore, the HP C/XL zero subscript
Therefore, the SPL zero subscript may refer	always refers to the "first" (lower bound)
to some cell other than the lower bound, or	cell of the array.
to a location outside the array.	

Indirect array-ids are equivalent to	Array-ids are identical to pointers in
pointers. They may be changed to point to	computations, except that the pointer value
a new cell zero location.	of an array-id cannot be changed. That is,
	it will always point to cell zero of the
Direct array-ids are the location of cell	declared array.
zero. Their locations cannot be changed.	
	However, HP C/XL pointers may be
	subscripted and used like array-ids,
	allowing them to act like SPL indirect
	array identifiers.

In HP C/XL, if A is an array-id and P is a pointer-id and P=&A[0], then
the following equivalences exist:

 A == &A[0] == P == &P[0]
 *A == A[0] == *P == P[0]
 *A+1 == A[0]+1 == *P+1 == P[0]+1
 *(A+1) == A[1] == *(P+1) == P[1]

This situation simplifies some of the conversion necessary for changing
SPL procedure calls to HP C/XL function calls. If an unsubscripted HP
C/XL array-id is passed to a function, it is passed by value as a pointer
to the array. This is identical to passing cell zero by reference, the
equivalent code in SPL. Therefore, conversion is minimal for full arrays
passed by reference. To pass a specific cell by reference, convert the
SPL cell reference, " id (cell)", to the HP C/XL address format,
"& id [cell]".

Summary of SPL Array Formats

1a. Indirect; bounded; variable is pointer to cell zero; pointer in
 next DB primary location; pointer IS allocated; array begins in

4-6

 next DB secondary location; array IS allocated.

1b. Direct; bounded; variable is cell zero; lower in next DB primary
 location; array IS allocated.

1c. Same as 1a; initialized.

1d. Same as 1b; initialized.

2a. Indirect; unbounded; variable is pointer to cell zero; pointer in
 next DB primary location; pointer NOT allocated; array NOT
 allocated.

2b. Indirect; unbounded; variable is pointer to cell zero; pointer in
 specified DB primary location; pointer NOT allocated; array NOT
 allocated.

3a. Direct; unbounded; variable is cell zero; cell zero in next DB
 primary location; array NOT allocated.

3b. Direct; unbounded; variable is cell zero; cell zero in specified
 DB primary location; array NOT allocated.

4a. Indirect; unbounded; variable is pointer to cell zero; pointer in
 next DB primary location; pointer IS allocated; array NOT
 allocated.

4b. Indirect; unbounded; variable is pointer to cell zero; pointer in
specified Q- or S-relative location; pointer NOT allocated; array

 NOT allocated.

5. Indirect; unbounded; variable is pointer to cell zero; pointer in
 next DB primary location; pointer IS allocated; array NOT
 allocated.

6. Direct; unbounded; variable is cell zero; cell zero in specified
 Q- or S-relative location; array NOT allocated.

7a. Direct (if ref-id is direct array or simple variable); unbounded;
variable is cell zero; cell zero in specified location; array NOT

 allocated.

 Indirect (if ref-id is pointer or indirect array); unbounded;
variable is pointer to cell zero; cell zero in ref-id location;

 pointer in next DB primary location IF one id type is BYTE and
other is not; ELSE pointer location shared with ref-id ; pointer IS

 allocated; array NOT allocated.

7b. Direct; unbounded; variable is cell zero; cell zero in specified
 location; array NOT allocated.

8. Direct (if ref-id is direct array); unbounded; variable is cell

4-7

 zero; cell zero in specified location; array NOT allocated.

 Indirect (if ref-id is pointer or indirect array); unbounded;
variable is pointer to cell zero; cell zero in specified location;
pointer in next DB primary location IF specified location is not
ref-id cell zero OR IF one array is BYTE and other is not; ELSE
pointer location shared with ref-id ; pointer IS allocated; array

 NOT allocated.

Array formats 2, 3, 4, 5, 6, 7, and 8 imply methods of data equivalencing
or "overlays".

Array formats 4, 5, 6, 7, and 8 cannot have the GLOBAL attribute.

Only array formats 1c and 1d may be initialized.

Comparison of Specific Array Declarations

Array Formats 1a and 1c: Bounded Indirect Arrays.

SPL	HP C/XL Equivalent

1a. INTEGER ARRAY ABC(0:4) ;	short int ABC_REF[5];
	short int *ABC = &ABC_REF[0];
1a. INTEGER ARRAY ABC(-3:4) ;	short int ABC_REF[5];
	short int *ABC = &ABC_REF[3];
1c. INTEGER ARRAY ABC(0:4) := 0,1,2,3;	short int ABC_REF[5]={0,1,2,3};
	short int *ABC = &ABC_REF[0];
1c. INTEGER ARRAY ABC(-3:4) := 6,2,5;	short int ABC_REF[8]={6,2,5};
	short int *ABC = &ABC_REF[3];

These are SPL "indirect" arrays. In SPL, the location labeled ABC is a
pointer that contains the address (initially) of the zero cell of the
array's data.

By converting the SPL indirect array identifier ABC to HP C/XL pointer
ABC, all the operations (such as assigning a new address) that may be
performed on the SPL array identifier may be performed on the HP C/XL
pointer identifier. The HP C/XL pointer may be subscripted to reference
array cells.

If the SPL lower bound is zero and the array identifier is not modified,
you may use the direct format, as shown below.

The examples above with the nonzero lower bounds show the solution to the
SPL capability to specify non-zero lower bounds. Subscripting ABC from
-3 through 4 will access the eight cells of ABC_REF from 0 through 7.

4-8

Array Formats 1b and 1d: Bounded Direct Arrays.

SPL	HP C/XL Equivalent

1b. INTEGER ARRAY ABC(0:4)=DB;	short int ABC[5];
1b. INTEGER ARRAY ABC(-3:4)=DB;	short int ABC_REF[8];
	short int *ABC = &ABC_REF[3];
1d. INTEGER ARRAY ABC(0:4)=DB:=0,1,2,3;	short int ABC[5]={0,1,2,3};
1d. INTEGER ARRAY ABC(-3:4)=DB:=6,2,5;	short int ABC_REF[8]={6,2,5};
	short int *ABC = &ABC_REF[3];

These are SPL "direct" arrays: the location labeled ABC refers directly
to cell zero of the array allocation.

Note that the examples above having a nonzero lower bound still require
an indirect solution, identical to the one used for indirect arrays.

Array Formats 2a, 4a, and 5: Unbounded Indirect Arrays.

SPL	HP C/XL Equivalent

2a. INTEGER ARRAY A1(@)=DB;	short int *A1;
4a. INTEGER ARRAY A2(@);	short int *A2;
5. INTEGER ARRAY A3(*);	short int *A3;

These declarations are equivalent in SPL, and each defines an identifi-
er.
However none of them allocates space for the array data; only one 16-bit
word is allocated to be used as a data label referring to an indirect
array, that is, as a pointer to space allocated elsewhere. The address
contained in this pointer must be initialized by the program at run time.

Simple pointers in HP C/XL are equivalent to this type of declaration.

4-9

Array Formats 7a and 8: Unbounded Equivalenced Arrays.

SPL	HP C/XL Equivalent

DOUBLE ARRAY EFG(0:25);	long int EFG[26];
...	...
7a. REAL ARRAY ABC(*) = EFG;	float *ABC = &EFG[0];
8. DOUBLE ARRAY ABC(*) = EFG(0);	#define ABC EFG
8. REAL ARRAY ABC(*) = EFG(10);	float *ABC = &EFG[10];

SPL assigns the same pointer location to ABC and EFG: if EFG is indi-
rect, if the index of EFG is zero, and if the type of both arrays or
neither is BYTE. HP C/XL allows you to simulate this with a #define only
if both arrays are of the identical type. Otherwise, you must use a
union data type.

Array Formats 2b and 3b: Unbounded Equivalenced Arrays.

SPL	HP C/XL Equivalent

2b. INTEGER ARRAY DEF(@) = DB + 10;	short int DB[256];
	...
	short int *DEF = &DB[10];
3b. REAL ARRAY ABC(*) = DB + 10;	union
	{
	short int DB[256];
	struct
	{
	short int dummy[10];
	float ABC_REF[1]; /*cell zero*/
	}
	}
	float *ABC = &ABC_REF[1];

In SPL, two types of arrays may be equated to the DB-relative area:
indirect arrays, in which one word of the DB area is allocated to be used
as a pointer to an array; and direct arrays, in which the name of the
array refers to the next element of the DB area, which is assumed to be
cell zero of an array actually contained within this (DB-relative) area.

If DB-relative addressing is required for an SPL application and cannot
be rewritten in a straightforward manner, a DB area may be simulated in
HP C/XL.

In the first example, the DB area is simulated as a short int array. The
value of the pointer DEF is set to the value in DB[10]. DEF is an
indirect array.

4-10

In the second example, the DB area is equivalenced in a union with a
structure that places cell zero of reference array ABC_DEF at location
DB[10]. The pointer ABC is used to reference the array cells of ABC_REF,
thus overcoming the undefined subscript range problem presented by the
unbounded direct array in SPL. ABC_REF is a direct array.

POINTER Declaration

Table 4-4. POINTER Declaration

SPL	HP C/XL Equivalent

pointer-declaration :	pointer-declaration :
[GLOBAL] [type] POINTER ptr-defn [,...] ;	[static] [type] ptr-defn [,...] ;

ptr-defn :	ptr-defn :
1a. ptr-id	1a. * ptr-id
1b. ptr-id := @ref-id	1b. * ptr-id = & ref-id
1c. ptr-id := @ref-id (index)	1c. * ptr-id = & ref-id "[" index "]"
2a. ptr-id = ref-id	
2b. ptr-id = ref-id sign offset	
3a. ptr-id = register	
3b. ptr-id = register sign offset	
4. ptr-id = offset	

Default type: LOGICAL	Default type: int (= long int)

Pointers are 16-bit values containing	Pointers are 32-bit values containing
DB-relative addresses.	standard MPE XL addresses.
	Overlays of pointers and other data types
	must be recoded.

Pointers may be initialized to addresses.	Same as SPL.
INTEGER POINTER P := @IVAR;	short int *P = &IVAR;
declares a pointer P, as a pointer to type	declares a pointer P, as a pointer to type
INTEGER data, and initializes it to the	short int data, and initializes it to the
address of the integer variable IVAR.	address of the short integer variable IVAR.

Pointers may contain either byte addresses	Pointers always contain byte addresses,
or 16-bit word addresses, depending on the	regardless of the type of data being
data type. The rule is that BYTE pointers	pointed to.
contain byte addresses, and all other types	
contain word addresses.	Unlike SPL, HP C/XL automatically scales
	the operands used in pointer arithmetic, so
Consequently, many SPL programs contain	adding one--"*(ptr +1)"--to a type char
runtime code to "convert" between byte and	pointer increments it by one, but adding

4-11

word addresses, generally via LSL and LSR	one to a type short int pointer will
shift operators. This also affects pointer	increment it by two, thus pointing to the
arithmetic, since adding one to a byte	next type short int variable.
pointer increments its address to the next	
byte , but adding one to an integer pointer	While this is more convenient than the SPL
increments its address to the next word . A	convention, it will require careful
pointer to type DOUBLE or REAL must be	examination of any SPL code being converted
incremented by two to advance it to the	to HP C/XL to guarantee accurate pointer
next DOUBLE or REAL variable. A pointer to	arithmetic operations.
type LONG must be incremented by four.	

A pointer location may be equated to a	No direct equivalent.
location relative to another variable or a	
register.	Locations may be equated with a union
	declaration or with pointer arithmetic.

LABEL Declaration

Table 4-5. LABEL Declaration

SPL	HP C/XL Equivalent

label-declaration :	No equivalent.
LABEL label-id [,...] ;	

Label declarations are not required.	Labels are not declared.
	Remove the SPL label declarations.

4-12

SWITCH Declaration

Table 4-6. SWITCH Declaration

SPL	HP C/XL Equivalent

switch-declaration :	define-directive :
SWITCH switch-id := label-id0 [,...]	#define switch-id (X) \
	switch (X) \
	" { " \
	case 0: goto label-id0 ; \
	case 1: goto label-id1 ; \
	[...]
	" } "

A switch declaration defines and names an	The corresponding transfer of control may
ordered list of labels that may be	be executed by specifying the defined macro
transferred to by an indexed GOTO statement	with the same index as in SPL:
in the form:	
	switch-id (index)
GOTO switch-id (index)	
See "GO TO Statement".	

ENTRY Declaration

Table 4-7. ENTRY Declaration

SPL	HP C/XL Equivalent

entry-declaration :	No equivalent.
ENTRY label-id [,...] ;	

You may emulate multiple entry points into an SPL program by using the
argc, argv, parm, and info parameters of the HP C/XL main function, and
coding a switch statement to goto the appropriate labels. (See "SWITCH
Declaration" above for the format.) In HP C/XL, you may pass arguments
to these parameters with the INFO= and PARM= parameters of the MPE XL
:RUN command.

4-13

DEFINE Declaration and Reference

Table 4-8. DEFINE Declaration and Reference

SPL	HP C/XL Equivalent

define-declaration :	define-directive :
DEFINE { define-id = text #} [,...] ;	#define define-id text

All the characters after "=" and up to the	All the characters after define-id and up
next "#" outside a quoted string are	to the end of the last non-continued line
assigned to define-id .	are assigned to define-id .
The declaration may use more than one line.	The directive may use more than one line.
No continuation character is needed.	Lines are continued by the presence of "\"
	as the last nonblank character.
	The "#" character must be in column one.

The declaration is referenced by using its	Same as SPL.
define-id anywhere in the subsequent source	
file.	

The define-id is evaluated and compiled	Same as SPL.
where it is referenced , not in the	
declaration.	

Example:	Example:
DEFINE NEXTC = CPTR:=CPTR+1#;	#define NEXTC ((*CPTR)++)
...	...
NEXTC; expands to: CPTR:=CPTR+1;	NEXTC; expands to: ((*CPTR)++);

In addition to the simple declaration allowed in SPL, HP C/XL also allows
macro directives with formal parameters. (See also "SWITCH Declaration"
above.) For example,

 #define next(x) (*(x)++)
 ...
 next(c); expands to: (*(c)++);
 next(y); expands to: (*(y)++);

Please observe a couple of points:

* The left parenthesis,"(", in the HP C/XL directive and the reference
 must be attached to the define-id (no spaces).

 * The parameter substitution is literal. The formal parameter (x
above) is replaced by the actual parameters (the characters between

 the parentheses) in the reference (c and y above).

 * It is wise to enclose the formal parameters and the entire macro

4-14

directive in parentheses to ensure correct evaluation of the actual
 parameters.

EQUATE Declaration and Reference

Table 4-9. EQUATE Declaration and Reference

SPL	HP C/XL Equivalent

equate-declaration :	define-directive :
	#define equate-id equate-expr
EQUATE { equate-id = equate-expr }[,...]	

An equate declaration computes the value of	A #define directive assigns the characters
the equate-expr , left-truncates it if	of equate-expr to equate-id without
necessary, and assigns it to equate-id as a	evaluation.
16-bit INTEGER.	
	The equate-id is evaluated and compiled
The value of equate-id is determined when	where it is referenced , not in the
it is declared , not when it is referenced.	declaration.

The declaration is referenced by using its	Same as SPL.
equate-id anywhere in the subsequent source	
file.	

See also "DEFINE Declaration and Reference" above and "Equated Inte-
gers".

DATASEG Declaration and Reference

Table 4-10. DATASEG Declaration and Reference

SPL	HP C/XL Equivalent

dataseg-declaration :	No equivalent.
DATASEG dataseg-name = dataseg-num	The concept of extra data segments does not
	exist in HP C/XL.
BEGIN	
type dataseg-variable [= dataseg-offset]	
...	
END ;	

Remove the DATASEG declaration and convert the variables in the BEGIN-
END block to normal HP C/XL variables.

5-1

Chapter 5 Expressions, Assignments, and Scan Statements

This chapter discusses conversion issues related to sections in Chapter

4 of the Systems Programming Language Reference Manual .

Expression Types

Table 5-1. Expression Types

SPL	HP C/XL Equivalent

Variables on either side of an operator	Variable types may be mixed in expressions.
must be of the same type. Type transfer	Automatic type conversion is performed
functions are used to convert types.	prior to execution of an operator. See "HP
	C/XL Rules for Automatic Numeric Type
	Conversion" in this chapter.
	A "cast" operator may be used to force an
	expression to a desired data type, perhaps
	for an actual parameter to a function.

The type transfer functions are the names	The corresponding cast operators are			
of the simple variable types, plus two	similar to SPL, except that the type names			
additions, in the function form:	are enclosed in parentheses:			
BYTE (double	integer	logical)	(unsigned char) (expression)	
DOUBLE (byte	integer	logical)	(long int) (expression)	
FIXR (real) rounds to DOUBLE	(No equivalent)			
FIXT (real) truncates to DOUBLE	(long int) (expression)			
INTEGER (byte	double	logical)	(short int) (expression)	
LOGICAL (byte	double	integer)	(unsigned short int) (expression)	
LONG (double	real)	(double) (expression)		
REAL (byte	double	integer		(float) (expression)
logical	long)			
	The expression may have any appropriate			
byte , double , integer , logical , long , and	character or numeric value. The			
real are the types permitted in the	parentheses around expression may be			
particular functions.	omitted if it is a single entity.			
	Conversion from float or double to any char			
Sometimes more than one function is	or int type is by truncation. There is no			
required, as in the conversion from REAL to	rounding function. HP C/XL also allows			
INTEGER, which requires either	other simple data and pointer types in cast			
"INTEGER(FIXR(real))" or	operations.			
"INTEGER(FIXT(real))".				

HP C/XL Rules for Automatic Numeric Type Conversion

As an expression is evaluated, HP C/XL performs automatic data type
conversions on the operands. First, each operand is evaluated and
converted, according to Table 5-2.

5- 2

Table 5-2. Automatic Unary Type Conversions

Original Type	Converted to

char	int

short int	int

unsigned char	unsigned int

unsigned short int	unsigned int

float	double 1

int	int 2

long int	long int 2

unsigned int	unsigned int 2

unsigned long int	unsigned long int 2

| |
| 1 This conversion from float to double may be prevented with the HP C/XL compiler |
| option "-Wc,-r". See the HP C/XL Reference Manual Supplement for details. |
| |
| 2 These types are not converted. They are included here for completeness. |

Second, arithmetic operands in binary operations are converted. If the
two operands are the same type, the conversion is complete. Otherwise,
the process continues row-by-row through Table 5-3 until a conversion
makes the operand types equal.

Table 5-3. Automatic Binary Type Conversions

One Operand	Other Operand	Conversion

double	any type	Other becomes double

float	any type	Other becomes float

| | | |

5-3

| unsigned long int | any type | Other becomes unsigned long int |
| | | |

long int	unsigned int	Both become unsigned long int

long int	not unsigned int	Other becomes long int

When a value is stored (as in an assignment), it is converted to the
destination type.

Variables

Table 5-4. Variables

SPL	HP C/XL Equivalent

Syntax of a variable in an expression:	Syntax of a variable in an expression:
1. simple-id	1. simple-id
2. array/ptr-id	2. array/ptr-id "[" 0"]" OR *array/ptr-id
3. array/ptr-id (index)	3. array/ptr-id "[" index "]"
4. @ identifier	4. & identifier
5. @ array/ptr-id	5. & array/ptr-id "[" 0 "]" OR array/ptr-id
6. @ array/ptr-id (index)	6. & array/ptr-id "[" index "]"
7. TOS	7. No equivalent.
8. ABSOLUTE (index)	8. No equivalent.

Syntax of a variable on the left of an	Syntax of a variable on the left of an
assignment operator (:=):	assignment operator (=):
a. simple-id	a. simple-id
b. array/ptr-id	b. array/ptr-id "[" 0"]" OR *array/ptr-id
c. array/ptr-id (index)	c. array/ptr-id "[" index "]"
d. @ ptr-id	d. ptr-id
e. TOS	e. No equivalent.
f. ABSOLUTE (index)	f. No equivalent.

The address operator, "@", specifies the	The address operator is "&".
location of a variable, rather than its	
contents.	An unsubscripted array-id or pointer-id is
	an address rather than cell zero; either
An unsubscripted pointer-id or array-id is	add the subscript or use the "*" operator.
assumed to be subscripted by zero.	
See "Addresses (@) and Pointers" below.	

The assignment operator is ":=".	The assignment operator is "=".

5- 4

	Note: The HP C/XL assignment operator,
	"=", is the SPL equality operator.

Indexes are enclosed in parentheses, "()".	Indexes are enclosed in brackets, "[]".

SPL allows assignment to the array-id of an indirect array since it is
really a pointer. HP C/XL does not permit assignments to any array-id.
You may simulate the process by using a pointer to array cell zero. (See
"ARRAY Declaration".)

The reserved word TOS and the ABSOLUTE function cannot be translated
(see below). Their operations must be recoded entirely.

TOS

Table 5-5. TOS

SPL	HP C/XL Equivalent

TOS	No equivalent.

Refers to the top of the hardware stack.	You could write routines to emulate the
	hardware stack, but a better solution is to
	recode SPL programs to eliminate stack
	references.

Addresses (@) and Pointers

Table 5-6. Addresses and Pointers

SPL	HP C/XL Equivalent

The address operator, "@", before a simple	The address operator, "&", before any
variable-id yields the address of the	variable-id yields the address of the
variable instead of its contents. If "@"	variable. Before a subscripted pointer-id
precedes an array or pointer reference, it	or array-id, it yields the address of the
yields the address of cell zero or of the	referenced location.
indexed location if indexed.	
	The dereference operator, "*", before a
If "@" precedes an unsubscripted pointer-id	pointer expression yields the value of the
or indirect array-id on the left side of	referenced location. An array-id can be
the assignment operator, ":=", the	used as a pointer in an expression.
right-side expression is stored as the new	
address value in the identifier.	An unsubscripted pointer-id or array-id
	yields the address in the identifier.
This leads to a potentially confusing	
feature of SPL:	
@ARRAYNAME := @NEWARRAY;	
This assigns the address of NEWARRAY(0) to	
array variable ARRAYNAME. Consequently,	

5-5

ARRAYNAME(0) and NEWARRAY(0) both refer to	
the same location.	

All SPL addresses are 16-bit quantities	All HP C/XL addresses are 32-bit
that may be stored in integer and logical	quantities.
variables. It is preferable to store	
addresses in pointer variables, but the	In many cases, the SPL logical arrays may
lack of pointer "arrays" in SPL has led to	be converted to HP C/XL pointer arrays
some applications that store addresses in	without difficulty.
logical arrays.	

Table 5-7 compares various uses of the SPL "@" operator and the
equivalent HP C/XL assignment.

Table 5-7. Assignments Using Pointers and Simple Variables

SPL	HP C/XL	Operation

POINTER P1,P2;	unsigned int *P1,*P2;	Declarations
LOGICAL V3;	unsigned int V3;	

P1 := P2	*P1 = *P2	Object of P2 stored in
		object of P1
P1 := @P2	*P1 = P2	Address in P2 stored in
		object of P1
@P1 := @P2	P1 = P2	Address in P2 stored in P1
@P1 := P2	P1 = *P2	Object of P2 stored in P1

P1 := V3	*P1 = V3	Value of V3 stored in object
		of P1
P1 := @V3	*P1 = &V3	Address of V3 stored in
		object of P1
@P1 := @V3	P1 = &V3	Address of V3 stored in P1
@P1 := V3	P1 = V3	Value of V3 stored in P1

V3 := P2	V3 = *P2	Object of P2 stored in V3
V3 := @P2	V3 = P2	Address in P2 stored in V3

5- 6

Absolute Addresses

Table 5-8. Absolute Addresses

SPL	HP C/XL Equivalent

absolute-address :	No equivalent.
ABSOLUTE (index)	

The use of absolute addresses in MPE V is entirely system-dependent, and
only permitted in privileged mode. They must be recoded in HP C/XL.

Function Designator

Table 5-9. Function Designator

SPL	HP C/XL Equivalent

function-designator :	function-designator :
1. function-id	1. function-id ()
2. function-id ()	2. function-id ()
3. function-id (actual-parm [,...])	3. function-id (actual-parm [,...]

actual-parm :	actual-parm :
a. simple-variable-id	a. simple-variable-id
b. array/ptr-id	b. array/ptr-id "[" 0"]" OR *array/ptr-id
c. array/ptr-id (index)	c. array/ptr-id "[" index "]"
d. procedure-id	d. function-id
e. label-id	e. (No equivalent)
f. arithmetic-expression	f. numeric-expression
g. logical-expression	g. numeric-expression
h. assignment-statement	h. assignment-expression
i. *	i. (No equivalent)

A typed procedure (or subroutine) may be	A function may be used in a numeric
used as a function in an arithmetic or	expression, except if the function is typed
logical expression.	as void.
Formats 1 and 2 are equivalent.	As shown in format 1, HP C/XL requires the
	parentheses even if there are no actual
	parameters.

5-7

See "Procedure Call Statement" and "Data Type" for more details about
parameters passed by reference.

Bit Operations

Table 5-10. Bit Operations

SPL	HP C/XL Equivalent

Bit operations can be used in any	Standard operators handle much of the bit
expression. They include bit extraction,	shifting and logical masking. Bit
bit concatenation or deposit, bit shifting,	extraction, concatenation, and some other
and logical masking.	manipulations will require user-supplied
	functions or #define directives.

Bit operations are commonly used in the limited-space MPE V system to
conserve space. With the increased memory of the MPE XL system, it may
be more efficient to rewrite bit operations to use full words, resulting
in both improved performance and a much more portable program.

NOTE While a simple BYTE variable is stored in bits 0-7 of a 16-bit
 word, the bits are referenced in bit operations as 8-15.

Table 5-11 summarizes all the HP C/XL bitwise operators.

Table 5-11. HP C/XL Bit Operators

Operator	Operation

op1 & op2	bitwise AND of op1 and op2

op1	op2	bitwise inclusive OR of op1 and op2

op1 ^ op2	bitwise exclusive OR of op1 and op2

op1 << op2	shift op1 left op2 bits

op1 >> op2	shift op1 right op2 bits

~ op2	bitwise negation of op2

5- 8

Bit Extraction

Table 5-12. Bit Extraction

SPL	HP C/XL Equivalent

bit-extraction-operation :	No direct equivalent.
source . (sbit : len)	
source :	
is a 16-bit value.	
sbit , len :	
are values from 0 to 15.	

Step 1: Convert the SPL operation to a function procedure, such as
BEXTRACT shown in Figure 5-1.
__
| |
| LOGICAL PROCEDURE BEXTRACT (SOURCE , SBIT , LEN) ; |
| VALUE SOURCE , SBIT , LEN ; |
| LOGICAL SOURCE ; |
| INTEGER SBIT , LEN ; |
| BEGIN |
| BEXTRACT := (SOURCE & LSL(SBIT)) & LSR(16 - LEN) ;|
| END ; |
__

Figure 5-1. SPL BEXTRACT Procedure: Bit Extraction

In the procedure, the formal parameter names correspond to the variables
in the syntax above. SOURCE is the word from which to extract bits, SBIT
is the starting bit, and LEN is the number of bits.

To use it, replace an expression like

 Y.(10:4);

with

 BEXTRACT(Y,10,4);

Step 2: Replace the SPL function with the #define macro directive in
Figure 5-2 or the HP C/XL function in Figure 5-3.
__
| |
| #define BEXTRACT(SOURCE , SBIT , LEN) \ |
| ((unsigned short int) \ |
| (((SOURCE) << (SBIT))) >> (16 - (LEN)))|
__

5-9

Figure 5-2. HP C/XL BEXTRACT Macro Directive: Bit Extraction

| |
| unsigned short int BEXTRACT(SOURCE , SBIT , LEN) |
| unsigned short int SOURCE , SBIT , LEN ; |
| { |
| return ((unsigned short int) |
| ((SOURCE << SBIT) >> (16 - LEN))) ;|
| } |

Figure 5-3. HP C/XL BEXTRACT Function: Bit Extraction

Either the macro or the function may be executed with the same format as
the SPL function, e.g., "BEXTRACT(Y,10,4)", so further conversion is
unnecessary.

Bit Fields.

It is common practice in SPL to pack fields of bits into a single 16-bit
word, and refer to them with DEFINE declarations, such as:
__
| |
| LOGICAL WORD, A, B, C; |
| |
| DEFINE FIELD'A = (0:10)#, |
| FIELD'B = (10:4)#, |
| FIELD'C = (14:2)#; |
| ... |
| WORD := %(16)F30C; <<set all fields>> |
| A := WORD.FIELD'A; <<bits 0 through 9>> |
| B := WORD.FIELD'B; <<bits 10 through 13>>|
| C := WORD.FIELD'C; <<bits 14 through 15>>|
__

A similar operation may be performed in HP C/XL with union and struct
declarations:

| |
| unsigned short A, B, C; |
| |
| union { |
| struct { |
| FIELD_A : 10; |
| FIELD_B : 4; |
| FIELD_C : 2; |
| } BITS; |
| unsigned short ALL16; |
| } WORD; |
| ... |
| WORD.ALL16 = 0xF30C; /*set all fields*/* |
| A = WORD.BITS.FIELD_A; /*bits 0 through 9*/ |
| B = WORD.BITS.FIELD_B; /*bits 10 through 13*/|
| C = WORD.BITS.FIELD_C; /*bits 14 through 15*/|

5- 10

Bit Concatenation (Merging)

Table 5-13. Bit Concatenation

SPL	HP C/XL Equivalent

bit-concatenation-operation :	No direct equivalent.
dest CAT source (dbit : sbit : len)	
source :	
is a 16-bit value from which bits are	
extracted.	
dest :	
is a 16-bit value in which bits are	
deposited.	
dbit , sbit , len :	
are values from 0 to 15.	

The SPL CAT operation is a means of constructing a new 16-bit quantity
from two existing 16-bit words. A bit field is extracted from source
and deposited into a same-length field in dest . Thus:

 A := %(16)ABCD;
 B := %(16)1234;
 X := A CAT B (4:8:4);

Bits 8 through 11 of word B are extracted and deposited in a copy of word
A, replacing bits 4 through 7. The resulting value equals %(16)A3CD. The
assignment places the value in X. A and B are unchanged.

Step 1: In the SPL program, convert the SPL operation to a function
procedure, such as BCONCAT shown in Figure 5-4 performs the same
operation.

| |
| LOGICAL PROCEDURE BCONCAT(DEST , SOURCE , DBIT , SBIT , LEN) ;|
| VALUE DEST , SOURCE , DBIT , SBIT , LEN ; |
| LOGICAL DEST , SOURCE ; |
| INTEGER DBIT , SBIT , LEN ; |
| BEGIN |
| LOGICAL M ; |
| LEN := 16 - LEN ; |
| M := (%(16)FFFF & LSR(LEN)) & LSL(LEN - DBIT) ; |
| BCONCAT := (DEST LAND NOT(M)) LOR |
| (IF DBIT < SBIT |
| THEN SOURCE & LSL(SBIT - DBIT) |
| ELSE SOURCE & LSR(DBIT - SBIT) LAND M) ;|
| END ; |

Figure 5-4. SPL BCONCAT Procedure: Bit Concatenation

In the procedure, DEST is the word where the bits will be deposited,

5-11

SOURCE is the word from which the bits will be extracted, DBIT is the
start bit in the destination word, SBIT is the start bit in the source
word, and LEN is the number of bits to be moved.

To use it, replace a CAT expression like

 A CAT B (4:8:4)

with

 BCONCAT(A,B,4,8,4)

Step 2: In the HP C/XL program, replace the SPL function procedure with
the HP C/XL function in Figure 5-5.
__
| |
| unsigned short int BCONCAT(DEST , SOURCE , DBIT , SBIT , LEN) |
| unsigned short int DEST , SOURCE , DBIT , SBIT , LEN ; |
| { |
| unsigned int TEMP ; |
| |
| LEN = 16 - LEN ; |
| TEMP = (0xFFFF >> LEN) << (LEN - DBIT) ; |
| return((unsigned short int) |
| ((DEST & ~TEMP) | |
| ((DBIT < SBIT ? SOURCE << (SBIT - DBIT) |
| : SOURCE >> (DBIT - SBIT)) & TEMP))) ;|
| } |
__

Figure 5-5. HP C/XL BCONCAT Function: Bit Concatenation

The function may be executed with the same format as the SPL procedure,
e.g., "BCONCAT(A,B,4,8,4)", so further conversion is unnecessary.

Bit Shifts

Table 5-14. Bit Shift Operators

SPL	HP C/XL Equivalent

bit-shift-operation :	bit-shift-operation :
operand & shift-op (count)	1. operand << count
operand :	2. operand >> count
is an arithmetic or logical primary .	
	Form 1 shifts the bits of operand left
shift-op :	count positions. The sign bit is lost.
is one of 17 shift operators, described	Zero bits are inserted on the right. Same
below.	as SPL's LSL and DLSL.
The shift operator is used to determine	
the participation of the sign bit,	Form 2 shifts the bits of operand right
regardless of the type of the operand.	count positions. If operand is unsigned,
	zero bits are inserted on the left. If
count :	operand is signed, the sign bit is extended
is the number of bits to shift.	on the left. Almost (but not quite) the
	same as SPL's LSR, DLSR, ASR, and DASR.

5- 12

Example:	Example:
operand is LOGICAL or INTEGER:	operand is unsigned short int or short int:
X := Y & LSL(4) ;	
	X = Y << 4 ;

Please notice that the examples above demonstrate the only simple exact
equivalents between SPL and HP C/XL.

Unlike SPL, the HP C/XL shift operators take note of the data type being
shifted, and behave differently for signed and unsigned data. To pro-
vide operations similar to the SPL shift operators, some manipulation
and type casting are necessary. There are no circular shifts in HP C/
XL, and these must be emulated by iteration.

The best solution is to convert the operations to function calls and
#define macro references, in the form:

spl-shift-op (operand , count)

For example, the SPL expression:

 Y & LSL(4)

would become the HP C/XL expression:

 LSL(Y,4)

Suggested macro directives and functions are described in the following
sections.

NOTE If necessary, check the source code and ensure that the value of C
 (count) is not negative in these macros and functions. You may
 wish to use the HP C/XL abs (absolute value) function.

16-Bit Shift Operators.

The six SPL 16-bit (single-word) shift operators are described in Table
5-15.

5-13

Table 5-15. SPL 16-Bit Shift Operators

| |
shift-op Operation
LSL logical shift left (sign not retained)
LSR logical shift right (no sign extension)
ASL arithmetic shift left (sign retained)
ASR arithmetic shift right (sign extended)
CSL circular shift left (rotate 16 bits left)
CSR circular shift right (rotate 16 bits right)

These operations may be performed in HP C/XL by the following #define
macro directives and function declarations. X represents the operand ; C
represents the count .
__
| |
| #define LSL(X,C) ((unsigned short int)((unsigned short int)(X) << (C)))|
__

Figure 5-6. HP C/XL LSL Directive: Bit Shift Operation

__
| |
| #define LSR(X,C) ((unsigned short int)((unsigned short int)(X) >> (C)))|
__

Figure 5-7. HP C/XL LSR Directive: Bit Shift Operation

| |
| #define ASL(X,C) ((short int)(((short int)(X) & 0x8000) \ |
| | ((short int)(X) << (C)) & 0x7FFF))|

Figure 5-8. HP C/XL ASL Directive: Bit Shift Operation

__
| |
| #define ASR(X,C) ((short int)((short int)(X) >> (C)))|
__

Figure 5-9. HP C/XL ASR Directive: Bit Shift Operation

__
| |
| unsigned short int CSL(X,C) |
| unsigned short int X; |
| int C; |
| { |
| for (;;--C) /*infinite loop, decrementing C after each iteration*/|
| { |
| if (C == 0) return(X); /*exit, returning X*/ |
| X = ((X & 0x8000) >> 15) | X << 1; |
| } |
| } |
__

5- 14

Figure 5-10. HP C/XL CSL Function: Bit Shift Operation

__
| |
| unsigned short int CSR(X,C) |
| unsigned short int X; |
| int C; |
| { |
| for (;;--C) /*infinite loop, decrementing C after each iteration*/|
| { |
| if (C == 0) return(X); /*exit, returning X*/ |
| X = ((X & 0x0001) << 15) | X >> 1; |
| } |
| } |
__

Figure 5-11. HP C/XL CSR Function: Bit Shift Operation

32-Bit Shift Operators.

The six SPL 32-bit (double-word) shift operators are described in Table
5-16.

Table 5-16. SPL 32-Bit Shift Operators

| |
| shift-op Operation |
DLSL logical shift left (sign not retained)
DLSR logical shift right (no sign extension)
DASL arithmetic shift left (sign retained)
DASR arithmetic shift right (sign extended)
DCSL circular shift left (rotate 32 bits left)
DCSR circular shift right (rotate 32 bits right)

These operations may be performed in HP C/XL by the following #define
macro directives and functions. X represents the operand ; C represents
the count .

| |
| #define DLSL(X,C) ((unsigned int)((unsigned int)(X) << (C)))|

Figure 5-12. HP C/XL DLSL Directive: Bit Shift Operation

| |
| #define DLSR(X,C) ((unsigned int)((unsigned int)(X) >> (C)))|

5-15

Figure 5-13. HP C/XL DLSR Directive: Bit Shift Operation

| |
| #define DASL(X,C) ((int)(((int)X & 0x80000000) | \|
| ((int)X << (C)) & 0x7FFFFFFF)) |

Figure 5-14. HP C/XL DASL Directive: Bit Shift Operation

| |
| #define DASR(X,C) ((int)((int)X >> (C)))|

Figure 5-15. HP C/XL DASR Directive: Bit Shift Operation

| |
| unsigned int DCSL(X,C) |
| unsigned int X; |
| int C; |
| { |
| for (;;--C) /*infinite loop, decrementing C after each iteration*/|
| { |
| if (C == 0) return(X); /*exit, returning X*/ |
| X = ((X & 0x80000000) >> 31) | X << 1; |
| } |
| } |
__

Figure 5-16. HP C/XL DCSL Function: Bit Shift Operation

__
| |
| unsigned int DCSR(X,C) |
| unsigned int X; |
| int C; |
| { |
| for (;;--C) /*infinite loop, decrementing C after each iteration*/|
| { |
| if (C == 0) return(X); /*exit, returning X*/ |
| X = ((X & 0x00000001) << 31) | X >> 1; |
| } |
| } |
__

Figure 5-17. HP C/XL DCSR Function: Bit Shift Operation

48-Bit Shift Operators.

The three SPL 48-bit (triple-word) shift operators are described in Ta-
ble
5-17.

5- 16

Table 5-17. SPL 48-Bit Shift Operators

| |
| shift-op Operation |
TASL arithmetic shift left (sign retained)
TASR arithmetic shift right (no sign extension)
TNSL normalizing shift left

Because there is no triple-word data type in MPE V (early versions of
LONG were three words), the use of these operations is extremely rare,
and is generally preceded by stack operations, which must be recoded in
HP C/XL. The TNSL operation normalizes a triple-word floating point
number, and is even more rare in SPL than the first two. If necessary,
these operations could be written in HP C/XL in a manner similar to the
examples above.

64-Bit Shift Operators.

Finally, the two SPL 64-bit (four-word) shift operators are described in
Table 5-18.

Table 5-18. SPL 64-Bit Shift Operators

| |
| shift-op Operation |
QASL arithmetic shift left (sign retained)
QASR arithmetic shift right (sign extended)

Because the only four-word data type in SPL is LONG (a floating point
number in a format unique to the hardware for which SPL was designed),
any use of these operators would almost certainly have to be recoded.
They could, however, be emulated by slight modification of the DASL and
DASR macro directives above.

Arithmetic Expressions

Table 5-19. Arithmetic Expressions

SPL	HP C/XL Equivalent

arithmetic-expression :	Same as SPL, except as noted below.
[sign] primary [operator primary][,...]	

5-17

sign :	Same as SPL, except:
+	(+ is not permitted as a sign)
-	

operator :	Same as SPL, except:
+ (addition)	
- (subtraction)	
* (multiplication)	
/ (division)	
^ (exponentiation allows real and long	Convert ^ to pow(x, y) function.
values to integer power)	
MOD (modulus)	% (modulus)
Note: The SPL exponentiation operator,	
"^", is the HP C/XL exclusive OR operator.	

primary :	Same as SPL, except:
variable	
constant	
bit-operation	
(arithmetic-expression)	
\ arithmetic-expression \	Convert \ ... \ to abs(x) function.
function-designator	
(assignment-statement)	

The most significant difference between SPL and HP C/XL arithmetic
expressions is that SPL allows no type mixing, whereas HP C/XL performs
automatic type conversions during the evaluation of an expression.
Normally, this is very convenient and produces the desired result.
Occasionally, type "cast" operators may be required to force HP C/XL to
adhere to SPL-like operations. Particular caution must be observed with
any bit manipulations, as an automatic type conversion may result in an
unexpected change in word size.

Sequence of Operations (Arithmetic)

Table 5-20. Order of Evaluation of Arithmetic Operators

SPL	HP C/XL Equivalent

Order of evaluation:	Same as SPL, except for the following:
1. bit operations	bit operations Implemented as function
expressions in parentheses	calls; same sequence
expressions in backslashes	level.
function designators	
assignment statements in parentheses	absolute value (expressions in
	backslashes) Implemented
	as function call; same
2. exponentiation	sequence level.
3. multiply	exponentiation Implemented as function
divide	call; collapses into first
modulus	level; care needed in
	converting operands.

5- 18

4. addition	
subtraction	

In general, well-formed expressions, with parentheses used to avoid
possible confusion, will always yield the same sequence of operations.

Care may be necessary to maintain the same precision, because of implic-
it data conversion. (See "Type Mixing (Arithmetic)" in this chapter).

Type Mixing (Arithmetic)

Table 5-21. Arithmetic Type Mixing

SPL	HP C/XL Equivalent

The mixing of data types across operands is	Arithmetic data types may be mixed. HP
not allowed in SPL, except that real and	C/XL performs automatic type conversions as
long values may be exponentiated to integer	needed, generally proceeding toward long
powers.	int and double values. Many type transfer
	functions can be eliminated or simplified.
Type transfer functions (see "Expression	
Types" above) are used to convert data	
types.	Where data types need forcing, HP C/XL
	provides the "cast" operators--data type
	names in parentheses preceding the value to
	be converted. See "Expression Types" above
	for more detail.

As an example, if you need to force a floating point divide of two
integers, the cast operator is (float):

 X = (float)M/(float)N;

Cast operators are essential for converting exponentiation involving
integers into the pow function. The SPL statement:

 I := J^K;
all integer variables

becomes the HP C/XL statement:

 I = pow ((double) J , (double) K) ;

5-19

Logical Expressions

Table 5-22. Logical Expressions

SPL	HP C/XL Equivalent

logical-expression :	Same as SPL, except:
* logical-elem [log-bit-op logical-elem]	
* lower <= test <= upper	((lower) <= (test) & (test) <= (upper))
	The parentheses may be necessary for
lower , test , upper :	correct evaluation if the elements are
	expressions or if the entire expression is
are integer expressions.	combined with other expressions.
	&:
	Same as SPL LAND. See below

logical-elem :	Same as SPL.
logical-expression	
logical-primary [rel-op logical-primary]	
arith-expression rel-op arith-expression	
logical-primary logical-op logical-primary	
byte-comparison	

| |
logical-primary is one of:	Same as SPL, except:
logical-variable	
logical/integer-constant	
string-constant	
logical-bit-operation	
(logical-expression)	
logical-function-designator	
(logical-assignment)	
NOT logical-primary (bitwise negation)	~ logical-primary (bitwise negation;tilde)

log-bit-op :	log-bit-op :	
LAND (logical bitwise AND)	& (bitwise AND)	
LOR (logical bitwise inclusive OR)		(bitwise inclusive OR)
XOR (logical bitwise exclusive OR)	^ (bitwise exclusive OR; circumflex)	
	Note: The HP C/XL exclusive OR operator,	
	"^", is the SPL exponentiation operator.	

The bit-wise operators, NOT, LAND, LOR, and	Similar to SPL. Operands may be any numeric
XOR, perform Boolean operations on the	types. Results correspond to operand
corresponding bits of their operands and	types.
produce a numeric result of type LOGICAL.	

| | |
| logical-op : | Same as SPL, except: |

5- 20

+ (unsigned addition)	
- (unsigned subtraction)	
* (unsigned multiplication)	
/ (unsigned division)	
MOD (unsigned modulus)	% (unsigned modulus)
** (unsigned multiplication)	* (unsigned multiplication)
// (unsigned division)	/ (unsigned division)
MODD (unsigned modulus)	% (unsigned modulus)
(**, //, and MODD give DOUBLE result)	Use (long int) cast if needed for the
	conversions from **, //, and MODD.

The logical-op operators perform unsigned	Similar to SPL. Operands may be any numeric
integer arithmetic on their operands and	types. Results correspond to operand
produce a numeric result of type LOGICAL.	types.

rel-op :	Same as SPL, except:
< (less than)	
<= (less than or equal to)	
> (greater than)	
>= (greater than or equal to)	
= (equal to)	== (equal to)
<> (not equal to)	!= (not equal to)
Note: The SPL equality operator, "=", is	
the HP C/XL assignment operator.	

The rel-op operators perform arithmetic	Similar to SPL, except: True is returned
comparisons on their operands and produce a	as int 1. False is returned as int 0.
Boolean result (true or false) of type	
LOGICAL.	Operands may be any numeric types. Results
	correspond to operand types.
True is returned as LOGICAL 65535 (INTEGER	
-1). False is returned as LOGICAL 0.	

The reserved word TRUE has the LOGICAL	No direct equivalent.
value 65535 (INTEGER -1).	
	You could use #define directives to define
The reserved word FALSE has the LOGICAL	SPLTRUE as 65535 and SPLFALSE as 0:
value 0 (INTEGER 0).	
	#define SPLTRUE 65535
	#define SPLFALSE 0
	and then change all TRUE and FALSE
	references to the special names. This
	would help you to locate instances where
	they were used in bit or numeric
	operations.

In tests for true and false, an odd number	A nonzero number is true; a zero number is
is true (bit 15 is on); an even number is	false.
false (bit 15 is off).	

Examples:	Examples:
L	L
L + NOT L1 LAND L2	L + ~L1 & L2
I <= N <= 100	I <= N & N <= 100
L	L != L1
L1	L ^ L1 % L2
L XOR L1 MOD L2	

5-21

Conversion Issues

SPL NOT Operator.

SPL uses the same operator, NOT, for both bitwise negation and Boolean
negation. HP C/XL uses two operators: "~" (tilde) for bitwise negation
and "!" for Boolean negation. They give different results, as shown in
Table 5-23.

Table 5-23. Logical and Bitwise Negation

SPL	HP C/XL Equivalent

NOT(0) = -1 (or LOGICAL 65535)	~(0) == -1 (or unsigned 4294967295)
16 off bits turned on	32 off bits turned on
	!(0) == 1
	since 0 means false

NOT(-1) = 0	~(-1) == 0
16 on bits turned off	32 on bits turned off
	!(-1) == 0
	since nonzero means true

NOT(%(16)F0F0) = %(16)0F0F	~(0xF0F0) == 0xFFFF0F0F
16 bits negated	32 bits negated
original value is false	both values are true
result value is true	!(0xF0F0) == 0
	since nonzero means true

The HP C/XL "~" operator is probably the better first-pass replacement
for the SPL NOT.

SPL TRUE and FALSE Constants.

SPL returns a 16-bit LOGICAL 65535 (INTEGER -1) for true and 0 for false.
However, when testing a value for true or false in a condition clause,
SPL examines only bit 15 for 1 or 0, ignoring bits 0-14.

HP C/XL returns a 32-bit integer 1 for true and 0 for false. When
testing a value for true or false, HP C/XL tests the whole number for
nonzero or 0.

These variations will have no effect on the value of a condition clause
except if the expressions in the clause use the returned true or false
values numerically, as in bit manipulation.

Many SPL programmers have taken advantage of the way SPL tests bit 15 for
true or false, and existing SPL code must be carefully examined for
examples of this practice. Too direct a translation of bit operations

5- 22

such as these is discouraged, as the resulting HP C/XL code will lack
portability and be more difficult to maintain.

Numeric Conversion. Unless a logical expression used in a condition
clause results in true or false values that are not 65535 or 0
respectively, or a relational (true/false) result is used in a bitwise
or numeric operation (not a recommended coding practice), there should
be no problem with a simple substitution of operator symbols.

In other words, if a test for true or false is not really a test for odd
or even, and if the values true and false are not used as numbers, the
results should be the same.

Converting a Range Test. The conversion of a range test, such as

 X <= Y <= Z

may be performed in two steps.

(The example is true if X is less than or equal to Y, AND Y is less than
or equal to Z.)

Step 1: In SPL, change the expression to two "<=" tests joined with
LAND, for example:

 (X) <= (Y) LAND (Y) <= (Z)

The parentheses may be needed to ensure the correct evaluation of the
expressions.

Step 2: In HP C/XL, replace LAND with either "&" or "&&":

 (X) <= (Y) & (Y) <= (Z)
 (X) <= (Y) && (Y) <= (Z)

The "&" bitwise AND is the "precise" conversion operator, but the "&&"
Boolean AND operator (described in "Condition Clauses" in this chapter)
is more efficient.

Other Notes. Note that the SPL test for equality "=" is the assignment
operator in HP C/XL. Failure to convert an SPL "=" to an HP C/XL "=="
will result in a statement which compiles without error, but which
performs a very different operation at runtime.

SPL uses relational operators to compare byte strings. See "Comparing
Byte Strings" below for an explanation and examples.

5-23

Sequence of Operations (Logical)

Table 5-24. Order of Evaluation of Logical Operators

SPL	HP C/XL Equivalent

Order of evaluation:	Same as SPL, except for the following:
	bit operations
1. logical bit operations	Implemented as function calls; same
logical expressions in parentheses	sequence level.
logical function designators	
logical assignment statements in	equality tests
parentheses	== and != evaluate below <, <=, >, >=.
	Parentheses may be needed.
2. *, ** (logical multiply; 16- and	
32-bit)	range tests
/, // (logical divide; 16- and	The conversion of SPL's X<=Y<=Z construct
32-bit)	to HP C/XL's X<=Y & Y<=Z will probably
MOD, MODD (logical modulus; 16- and	need parentheses around the X, Ys, and Z.
32-bit)	
3. + (logical addition)	
- (logical subtraction)	
4. <, <=, >, >=, =, <> (algebraic and	
logical comparisons)	
5. LAND (logical bitwise AND)	
6. XOR (logical bitwise exclusive OR)	
7. LOR (logical bitwise inclusive OR)	
lower <= test <= upper (range test)	

Type Mixing (Logical)

The mixing of data types across operands is not allowed in SPL. Type
transfer functions (see "Expression Types" above) are used to convert
data types. See "Type Mixing (Arithmetic)" above for more detail.

Comparing Byte Strings

Table 5-25. Comparing Byte Strings

SPL	HP C/XL Equivalent

byte-comparison :	byte-comparison :
1. byte-ref rel-op byte-ref , (count)	1. strncmp (byte-ref , byte-ref , count)
[, stack-decr]	rel-op 0
2. byte-ref rel-op *PB , (count)	2. (No direct equivalent;
[, stack-decr]	convert to format 1)
3. byte-ref rel-op string-const	3. strcmp (byte-ref , string-const)
[, stack-decr]	rel-op 0

5- 24

4. byte-ref rel-op (value-group [,...]	4. (No direct equivalent;
[, stack-decr]	convert to format 3)
5a. byte-variable = ALPHA	5a. isalpha (byte-variable)
5b. byte-variable <> ALPHA	5b. !isalpha (byte-variable)
5c. byte-variable = NUMERIC	5c. isdigit (byte-variable)
5d. byte-variable <> NUMERIC	5d. !isdigit (byte-variable)
5e. byte-variable = SPECIAL	5e. !isalnum (byte-variable)
5f. byte-variable <> SPECIAL	5f. isalnum (byte-variable)

byte-reference :	byte-reference :
a1. array/pointer-id	a1. array/pointer-id
a2. array/pointer-id (index)	a2. & array/pointer-id " [" index "] "
b. *	b. (No equivalent;
	stack reference requires recoding)
	The str... functions expect addresses of
	the strings; hence, the "&" in the indexed
	format. Note that array/pointer-id alone
	is an address (of cell zero).

count :	The equivalent syntaxes work left-to-right
is the number of characters to compare.	only. An alternate user-defined function,
If count is negative, the comparison is	BYTECMP, that handles both cases is shown
right-to-left.	below.

stack-decr :	The equivalent syntaxes above work only for
is the number of items to remove from the	a decrement of 3. The functionality of
stack. The default value is 3.	other values is provided in the
	user-defined function BYTECMP, shown below.

value-group :	This element and its surrounding
is a numerically defined byte string.	parentheses must be converted to an HP C/XL
	character string.

byte-variable	Same as SPL. The is... functions expect a
is a reference to a single byte, either	character value.
as an array or pointer cell reference or	
as a simple byte variable.	

Here are five examples of the basic forms of byte comparison:

5-25

SPL	HP C/XL Equivalent

A < B(3), (5),3	strncmp(A,&B[3],5) < 0
B(5) >= *PB,(5)	No equivalent
A <= "string"	strcmp(A,"string") <= 0
B = ("ab",%07)	strcmp(B,"ab\7") == 0
C <> ALPHA	!isalpha(C)

The second example above, which compares bytes to a previously stacked
PB-relative address, is a hardware-dependent construct that has no
equivalent in HP C/XL.

The isalnum, isalpha, isdigit, strcmp, and strncmp functions are all
members of the standard HP C/XL function library.

Some more examples, used here as condition clauses of IF statements:

SPL	HP C/XL Equivalent

IF A = B,(5) THEN...	if (strncmp(A,B,5) == 0)...
IF A <> B,(5) THEN...	if (strncmp(A,B,5) != 0)...
IF A > B,(5) THEN...	if (strncmp(A,B,5) > 0)...
IF A < B,(5) THEN...	if (strncmp(A,B,5) < 0)...
IF A >= B,(5) THEN...	if (strncmp(A,B,5) >= 0)...
IF A(5) = "abc" THEN...	if (strcmp(&A(5),"abc") == 0)...
IF B <> "abc" THEN...	if (strcmp(B,"abc") != 0)...

These HP C/XL statements are equivalent to the SPL versions if the byte
strings (character strings) being compared do not contain a NUL charac-
ter in the range being tested.

The SPL byte comparisons scan exactly the number of characters indicated
by count or the number of character values in the string or value-
group s.

By definition, an HP C/XL string is terminated by the ASCII NUL character
('\0', numeric value 0). HP C/XL functions that scan strings usually
stop scanning when they find a NUL character or when they reach a
specified count.

However, because NUL equals zero and is the lowest character value,
these comparison functions should work well, except in the following

5- 26

situation. Consider the case where both strings are equal up to a NUL
character and different afterward: In HP C/XL notation,

 A == "ab\0de" (character values 'a', 'b',NUL,'d','e')

 and

 B == "ab\0fg" (character values 'a','b',NUL,'f','g')

The SPL comparison "A = B,(5)" would be false, because d is less than
f. But the HP C/XL comparison "strncmp(A,B,5)==0" would be true,
because strncmp stops scanning at the NULs.

The HP C/XL functions strcmp and strncmp return a value less than zero if
the string pointed to by the first parameter compares less than the
string pointed to by the second parameter, greater than zero if the first
is greater than the second, and equal to zero if they are equal.

The three HP C/XL library functions isalpha, isdigit, and isalnum are
not affected by this NUL "problem". They provide equivalents for all the
corresponding SPL byte tests.

If the NUL character can be an embedded character, or if the count is
negative, requiring a right-to-left scan, or if you wish to make use of
the values left on the stack by the SPL byte comparisons, then the
user-defined function BYTECMP can help. See Figure 5-18 in this chap-
ter.

BYTECMP accepts the first byte-reference, the comparison code, the sec-
ond byte reference, the count, and the stack decrement, as given in SPL
syntax form 1. It also accepts the addresses where it can return the
byte count and the left and right byte addresses where the comparison
ended.

Also see "SPL BYTECMP Procedure: Byte Comparison" and "HP C/XL BYTECMP
Function: Byte Comparison" for further details.

| |
| enum CMP { LSS, LEQ, EQU, NEQ, GEQ, GTR }; |
| |
| int BYTECMP(left,cmp,right,count,sdec,caddr,laddr,raddr) |
| char *left, *right, **laddr, **raddr; |
| enum CMP cmp; |
| int count, sdec, *caddr; |
| |
| { |
| #define ADJ {if (count > 0) {--count;++left;++right;} \ |
| else {++count;--left;--right;}} |
| |
| switch (cmp) |
| { |
| case LSS: /* compare < */ |
| while ((count != 0) && (*left < *right)) ADJ; |
| break; |
| case LEQ: /* compare <= */ |
| while ((count != 0) && (*left <= *right)) ADJ;|
| break; |

5-27

| case EQU: /* compare == */ |
| while ((count != 0) && (*left == *right)) ADJ;|
| break; |
| case NEQ: /* compare != */ |
| while ((count != 0) && (*left != *right)) ADJ;|
| break; |
| case GEQ: /* compare >= */ |
| while ((count != 0) && (*left >= *right)) ADJ;|
| break; |
| case GTR: /* compare > */ |
| while ((count != 0) && (*left > *right)) ADJ; |
| break; |
| } |
| |
| switch (sdec) |
| { |
| case 0: *raddr = right; |
| case 1: *laddr = left; |
| case 2: *caddr = count; |
| case 3: ; /* nil */ |
| } |
| return (count == 0) |
| |
| #undef ADJ |
| } |
__

Figure 5-18. HP C/XL BYTECMP Function: Byte Comparison

Condition Clauses

Table 5-26. Condition Clauses

SPL	HP C/XL Equivalent

condition-clause :	condition-clause :		
cond-term [{AND	cond-term [{&&		
OR} cond-term][...]			} cond-term][...]

cond-term is one of:	cond-term is one of:		
cond-primary	cond-primary		
(cond-primary [OR cond-primary][...])	(cond-primary [cond-primary][...])

cond-primary is one of:	Only logical-expression is permitted.
logical-expression	
branch-word	

branch-word is one of:	No equivalent.
CARRY NOCARRY OVERFLOW NOOVERFLOW IABZ	These refer to MPE V hardware constructs
DABZ IXBZ DXBZ < <= <> = > >=	and must be recoded.
	Some condition code testing is possible
	with the HP C/XL function ccode. See the
	HP C/XL Library Reference Manual for
	details.

5- 28

In tests for true and false, an odd value	A nonzero value is true; a zero value is
is true (bit 15 is on); an even value is	false.
false (bit 15 is off).	

Condition clauses in SPL may appear in IF expressions and in IF, DO, and
WHILE statements.

The SPL hardware branch words (CARRY, NOCARRY, etc.) test hardware
registers built into the MPE V-based architecture. These
hardware-dependent constructs will have to be rewritten using the
intrinsic library routines.

Logical expressions may be combined using AND and OR. These Boolean
operators generate branches to optimize runtime performance by suspend-
ing evaluation of an expression as soon as it is determined to be true or
false. That is, as soon as any logical expression combined with AND is
found to be false, the false branch is taken immediately.

SPL programmers use this feature, aware of the possible differences in
side effects as a result of incomplete evaluation of a condition clause.

The SPL AND operator has a higher precedence than OR. This precedence can
be overridden by parentheses. However, parentheses cannot be placed
around items combined by the AND operator.

In HP C/XL, the "logical AND" operator is "&&". and the "logical OR"
operator is "||". These are identical to the SPL AND and OR
respectively, including the rules of precedence and partial evaluation.
HP C/XL does not restrict parentheses around "&&".

CAUTION In SPL, the Boolean value of a logical expression is determined
only by bit 15 of the value. If bit 15 is on, the expression is

 true. If bit 15 is off, the expression is false.

 In HP C/XL, the Boolean value of a logical expression is
determined by its numeric value. If it is nonzero, the value is

 true. If it is zero, the value is false.

 Since a logical expression may be the result of numeric and
 logical as well as Boolean operations, you must be careful in
 converting it. See "Logical Expressions" above for further
 details.

5-29

IF Expressions

Table 5-27. IF Expressions

SPL	HP C/XL Equivalent

if-expression :	conditional-expression :
IF condition-clause THEN true-expression	condition-clause ? true expression
ELSE false-expression	: false-expression

Example:	Example:
X + (IF A < B THEN 5 ELSE 6)	X + (A < B ? 5 : 6)

| |
| In both cases above, the expression evaluates to X+5 if the condition clause "A < B" |
| is true; otherwise, it evaluates to X+6. |
An IF expression may be used in any
expression where the value of the result is
allowed.

The HP C/XL syntax may look cryptic to SPL programmers. It can be
beneficial to add parentheses to make the sections stand out, such as:

 X + ((A < B) ? (5) : (6))

The HP C/XL "? :" conditional expression has lower precedence than "||"
(logical OR) and higher precedence than "=" (assignment).

Assignment Statement

Table 5-28. Assignment Statement

SPL	HP C/XL Equivalent

assignment-statement :	assignment-statement :
1. variable	1. variable
[:= variable][...] := expression	[= variable][...] = expression ;
2. variable (left-bit : len)	2. (No direct equivalent;
[:= variable][...] := expression	see BDEPOSIT function below.)
	Note: The HP C/XL assignment operator, "=",
	is the same as the SPL equality operator.

The type of expression may be different from	The types of the variable s and expression
the types of the variable s and they may be	may be different They do not have to have
different from each other, except they must	the same length. HP C/XL performs automatic
all be the same length. Type BYTE is treate	type conversions as assignment proceeds from
as a 16-bit quantity.	right to left.

| | |
| The leftmost assigned-to variable may | Bit-field assignment is not allowed. |

5- 30

specify a bit field in itself where the	This operation may be performed separately
value will be deposited.	with the user-defined function BDEPOSIT,
	described below.

May be used as an expression.	Same as SPL.
Its value is the value stored into the	
leftmost operand. Its type is the type of	
the leftmost operand.	

For compatability with very old systems, SPL accepts the "_" (under-
score) character as an alternate to the ":=" assignment symbol. (Early
terminals and printers labeled and displayed what now is the underscore
as a "left arrow" symbol, "<--".)

SPL Examples:

 Z := B * F;
arithmetic expression assignment

 F1 := F2 = F3;
logical expression assignment

 Z.(5:6) := P := B;
multiple assignment, bit deposit

 Z := (B := B + 1) * 2;
assignment in expression

 Z _ B;
underscore replacing ":="

HP C/XL Examples:

 i = k * l; /*arithmetic expression assignment*/
 l1 = l2 == l3; /*logical expression assignment*/
 i = (k = k + 1) * 2; /*assignment in expression*/
 i = (++k) * 2; /*same operation*/

The SPL bit deposit operation may be emulated in SPL and converted to HP
C/XL in two steps.

Step 1: In SPL, add the BDEPOSIT procedure in Figure 5-19 to the
compilation unit.

| |
| PROCEDURE BDEPOSIT(dw,sb,nb,expr); |
| VALUE dw, sb, nb, expr; |
| LOGICAL dw, sb, nb, expr; |
| BEGIN |
| LOGICAL M; |
| POINTER P; |
| nb := 16-nb; |
| sb := nb-sb; |
| M := (%(16)FFFF & LSR(nb)) & LSL(sb); |
| @p := dw; |
| p := (p LAND NOT m) LOR (expr & LSL(sb) LAND m);|
| END; |

Figure 5-19. SPL BDEPOSIT Procedure: Bit Assignment

Here dw is the address of the destination word, sb is the starting bit of
the deposit field, nb is the number of bits to be deposited, and expr is
the value to be deposited into the field.

5-31

Then separate the bit deposit from any multiple assignments and convert
it to a procedure call. For example,

 I.(5:6) := J + K ;

would become

 BDEPOSIT(@I,5,6,J+K);

Note that the address of the first parameter is formed with the "@"
operator, and that the parameter has been declared type LOGICAL (16 bit
word), and passed by value. Within BDEPOSIT, this value is assigned to a
pointer to allow the actual value to be accessed. This rather
unconventional approach (normal SPL practice would be to pass this
parameter by reference), is to simplify later conversion to the HP C/XL
function described below.

Step 2: In HP C/XL, replace the SPL procedure with the HP C/XL BDEPOSIT
function shown in Figure 5-20.

| |
| void BDEPOSIT(dw,sb,nb,exp) |
| unsigned short *dw, sb, nb, exp; |
| { |
| unsigned short m; |
| nb = 16-nb; |
| sb = nb-sb; |
| m = (0xFFFF>>nb)<<sb; |
| *dw = (*dw & ~m) | (exp<<sb & m);|
| } |

Figure 5-20. HP C/XL BDEPOSIT Function: Bit Assignment

Then replace the converted SPL call to BDEPOSIT:

 BDEPOSIT(@I,5,6,J+K);

with:

 BDEPOSIT(&I,5,6,J+K);

Note that the only difference in the calls is that "@" is changed to "&".

5- 32

MOVE Statement

Table 5-29. MOVE Statement

SPL	HP C/XL Equivalent

move-statement :	No direct equivalents.
1. MOVE target := source , (count)	1. (See the MOVEB and MOVEW
[, stack-decr]	functions below.)
2. MOVE target := *[PB] , (count)	2. (Convert to format 1 .)
[, stack-decr]	3. (See the MOVEB, MOVEW, and MOVESB
3. MOVE target := string-const	functions below.)
[, stack-decr]	4. (Convert to format 3 .)
4. MOVE target := (value-group [,...])	5. (See the MOVEBW function below.)
[, stack-decr]	6. (Convert to format 5 .)
5. MOVE target := source WHILE cond	
[, stack-decr]	
6. MOVE target := * WHILE cond	
[, stack-decr]	

target :	
array/pointer-ref	
*	
source :	
array/pointer-ref	

May be used (without stack-decr)	
as an integer expression.	
Its value is the number of words	
or bytes moved.	

MOVE statements in SPL are designed to utilize several sophisticated
hardware move instructions. There are byte and word moves which can be
performed unconditionally or dependent upon a test condition. The
destination of the move must be an array or pointer, and the source may
be an array, a pointer, a string constant, or a group of values. Two of
the SPL moves are not directly translatable, for example:

 MOVE arrayname := *PB,(count)

 MOVE array name := (10(" "),"string",5(""))

The first is non-translatable because there is no register-relative
addressing in HP C/XL; the second, because repeat factors and grouping
of constants into a list are not available. The second case may be
handled by multiple move operations or manual expansion of the repeti-
tions into a string constant.

NOTE The str... amd mem... series of HP C/XL standard library
 functions may also be useful here. The str... functions expect

the string to be terminated with NUL ('\0', numeric value 0). The

5-33

mem... functions do not use NUL. See the HP C/XL Library Reference
Manual for details.

Unconditional byte moves may be emulated in HP C/XL by the MOVEB
function, shown in Figure 5-21.

| |
| int MOVEB(to,from,count,sdec,source_adr,dest_adr)|
| char *to, *from, **source_adr, **dest_adr; |
| int count, sdec; |
| { |
| int c; |
| c = 0; |
| if (count>0) /* left-to-right move */ |
| do *to++ = *from++; while (++c < count); |
| else if (count<0) /* right-to-left move */|
| { |
| count = -count; |
| do *to-- = *from--; while (++c < count);|
| } |
| switch (sdec) |
| { |
| case 0: ; /* fall through to case 1 */ |
| case 1: *source_adr = from; |
| case 2: *dest_adr = to; |
| case 3: ; /* nil */ |
| } |
| return(c); |
| } |
__

Figure 5-21. HP C/XL MOVEB Function: MOVE Bytes Statement

In MOVEB, to is the target address, from is the source address, count
isthe number of bytes to be moved (a positive value means a left-to-right
move, negative means right-to-left), and sdec is is the value which
would have been used as an SPL stack decrement. In this context, sdec
= 3 will cause the function to ignore the last two parameters, which
need not be present. An sde c = 2 will set the value for dest_adr, sdec
= 1 or 0 will set both dest_adr and source_adr. The parameter source_adr
is the address of the next character beyond the final character moved,
dest_adr is the address of the next character beyond the final character
moved, and the return value of the function is the number of bytes moved.

The following emulates the MOVE statement in SPL for byte moves with no
information removed from the stack:

 MOVE A1 := A2, (CNT), 0
 LEN := TOS; will always be zero
 @S1 := TOS;
 @D1 := TOS;
 NUM := @D1 - @A1; number of bytes moved

This may be converted to HP C/XL as:

 NUM = MOVEB(&A1,&A2,CNT,0,&S1,&D1);

5- 34

The other variants of byte moves (removing one, two, or all three of the
words normally left on the stack after a MOVE) may all be emulated by
this function.

Word moves of 16-bit quantities may be emulated by a minor variation of
MOVEB, the HP C/XL function, MOVEW, shown in Figure 5-22.
__
| |
| int MOVEW(to,from,count,sdec,source_adr,dest_adr) |
| unsigned short *to, *from, **source_adr, **dest_adr;|
| { |
| int c; |
| c = 0; |
| if (count>0) /* left-to-right move */ |
| do *to++ = *from++; while (++c < count); |
| else if (count<0) /* right-to-left move */ |
| { |
| count = -count; |
| do *to-- = *from--; while (++c < count); |
| } |
| |
| switch (sdec) |
| { |
| case 0: ; /* fall through to case 1 */ |
| case 1: *source_adr = from; |
| case 2: *dest_adr = to; |
| case 3: ; /* nil */ |
| } |
| |
| return(c); |
| } |
__

Figure 5-22. HP C/XL MOVEW Function: MOVE Words Statement

The MOVE statement with a WHILE condition may be emulated by the HP C/XL
MOVEBW function, shown in Figure 5-23.

MOVEBW is used similarly to MOVEW, but, instead of a count, a condition
is supplied. The condition is chosen from the enum declared as COND that
matches the SPL options.

The SPL operation:

 LEN := MOVE B1 := B2 WHILE AS;
 @S1 := TOS;
 @D1 := TOS;

may be replaced with the HP C/XL function call:

 LEN = MOVEBW(B1,B2,AS,0,&S1,&D1);

In SPL, a MOVE-WHILE operation sets a condition code to indicate the type
of the last character of the source that was examined (but not moved).
This is easily tested by standard HP C/XL character functions. For
example, if an SPL MOVE-WHILE statement is followed by:

 IF > THEN...<<move stopped on a digit 0-9>>

5-35

you may use the HP C/XL equivalent:

 if isdigit(*(s1-1)).../* move stopped on a digit */
__
| |
| enum COND { A, AN, AS, N, ANS }; |
| |
| int MOVEBW(to,from,cond,sdec,source_adr,dest_adr) |
| enum COND cond; |
| char *to, *from, **source_adr, **dest_adr; |
| int sdec; |
| { |
| char *temp; |
| temp = to; |
| switch (cond) |
| { |
| case A: while (isalpha(*from)) *to++=*from++; |
| break; |
| case AN: while (isalnum(*from)) *to++=*from++; |
| break; |
| case AS: while (isalpha(*from)) *to++=toupper(*from++);|
| break; |
| case N: while (isdigit(*from)) *to++ = *from++; |
| break; |
| case ANS: while (isalnum(*from)) *to++=toupper(*from++);|
| break; |
| } |
| |
| switch (sdec) |
| { |
| case 0: ; /* fall through to case 1 */ |
| case 1: *source_adr = from; |
| case 2: *dest_adr = to; |
| } |
| |
| return(to-temp); |
| } |
__

Figure 5-23. HP C/XL MOVEBW Function: MOVE Bytes WHILE Statement

Moving a string constant into a byte array or through a byte pointer may
require the HP C/XL MOVESB function, shown in Figure 5-24.
__
| |
| int MOVESB(to,str,sdec,source_adr,dest_adr) |
| char *to, *str, **source_adr, **dest_adr; |
| int sdec; |
| { |
| char *temp; |
| temp = to; |
| while (*str != '\0') *to++ = *str++; |
| switch (sdec) |
| { |
| case 0: ; /* fall through to case 1 */|
| case 1: *source_adr = str; |
| case 2: *dest_adr = to; |
| case 3: ; /* nil */ |
| } |
| return(to - temp); |
| } |
__

Figure 5-24. HP C/XL MOVESB Function: MOVE String Bytes Statement

5- 36

This function makes use of the fact that HP C/XL terminates a string with
the NUL character ('\0', numeric value 0).

Consequently, the SPL code

 LEN := B1 := "test string",0;
 CNT := TOS; <<always zero>>
 @S1 := TOS;
 @D1 := TOS;

may be replaced with:

 LEN = MOVESB(S1,"test string",0,&S1,&S1);

MOVEX Statement

This SPL statement is available only to privileged users accessing extra
data segments. Any use of extra data segments should be recoded,
utilizing the larger memory space available in HP C/XL.

SCAN Statement

Table 5-30. SCAN Statement

SPL	HP C/XL Equivalent

scan-statement :	No direct equivalent.
SCAN byte-ref {WHILE	
UNTIL} testword	
[, stack-decr]	

byte-ref is one of:	Same as SPL, except * stack reference must
	be recoded.
array/pointer-id	
array/pointer-id (index)	
*	

testword is one of:	
integer constant	
INTEGER or LOGICAL variable	
string constant of one or two characters	
*	

First character of testword is	
terminal-char . Second character of	
testword is test-char . If terminal-char is	
omitted, it is NUL (numeric 0).	

| | |

5-37

In SCAN-UNTIL, scan starts at byte-ref and	
continues until either test-char or	
terminal-char is found.	
In SCAN-WHILE, scan starts at byte-ref and	
continues until either terminal-char is	
found or character NOT matching test-char	
is found.	
Carry bit in status register is set to one	
if terminal-char was found; otherwise, it	
is set to zero.	
The address of the terminating byte is	
placed on the stack.	

May be used (without stack-decr) as an	
arithmetic function. Its value is the	
number of words or bytes scanned.	

The SCAN statement in SPL searches a string of bytes for either of two
characters, a test character and a terminating character. The statement
may be used either as a function to return the number of bytes scanned,
or with a stack decrement value to leave information on the stack.

The HP C/XL library contains string search functions which perform
similar operations. For example, the SPL statements

 SCAN B1 WHILE " ",0; <<scan while zero or blank>>
 T := TOS; <<testword, always unchanged>>
 @S1 := TOS; <<address of first blank>>

may be duplicated in HP C/XL by

 s1 = strchr(b1,' ');

The strchr function searches for a single character, returning an ad-
dress where it was found. To look for two characters, as SCAN does,
another function may be used:

 s1 = b1 + strcspn(b1,"% ");

The function strcspn returns a count of the number of characters which
were not any of the characters in the second parameter. This value
added to the address being searched yields the address of the first oc-
currence of a character in the string supplied as the second parameter.

SCAN may be used as a function. For example,

 NUM := SCAN B1 UNTIL " ";

or

 NUM := SCAN B1 UNTIL "% ";

5- 38

In this case, these statements might become:

 NUM = strchr(B1,' ') - B1;"

or

 NUM = strcspn(B1,"% ");

NOTE The HP C/XL library function memchr can be used to scan strings
that are not terminated by NUL ('\0', numeric value 0). For more
information on memchr and its related functions and on the str...

 series of functions, see the HP C/XL Library Reference Manual .

The HP C/XL SCANU function, shown in Figure 5-25, duplicates the
SCAN-UNTIL operation.
__
| |
| int SCANU(ba,test,sdec,scan_adr) |
| char *ba, *scan_adr; |
| unsigned short test; |
| int sdec; |
| { |
| char termc, testc, *temp; |
| temp = ba; |
| termc = (char)test >> 8; |
| testc = (char)test & 0xFF; |
| while ((*ba != testc) && (*ba != testc)) ba++;|
| switch (sdec) |
| { |
| case 0: ; /* fall through to case 1 */ |
| case 1: *scan_adr = ba; |
| case 2: ; /* nil */ |
| } |
| return(ba - temp); |
| } |
__

Figure 5-25. HP C/XL SCANU Function: SCAN-UNTIL Statement

6-1

Chapter 6 Program Control Statements

This chapter discusses conversion issues that correspond to sections in
Chapter 5 of the Systems Programming Language Reference Manual .

Program Control

SPL has nine basic methods of altering the normal sequential execution
of instructions: CASE, DO, FOR, GOTO, IF, RETURN, and WHILE statements,
and procedure and subroutine call statements.

HP C/XL has equivalents for all these control statements, with some
variations in syntax. In general, HP C/XL provides more options and
control than SPL.

GO TO Statement

Table 6-1. GOTO Statement

SPL	HP C/XL Equivalent

goto-statement :	Similar to SPL:
1. GO [TO] label	1. goto label ;
2. GO [TO] [*] switch-id (index)	2. switch-id (index) ;

1. This syntax may transfer to a label	1. Same as SPL, except that labels
in the current routine (main or	cannot be passed to functions.
procedure) or to a label outside a	Passed labels must be recoded,
procedure that was passed to the	perhaps as a function return value.
procedure as a parameter.	
2. This syntax transfers to a label	2. The SWITCH declaration should be
declared in a SWITCH declaration for	recoded as a #define macro
the current routine (main or	directive, as described in "SWITCH
procedure). The "*" option turns	Declaration" and "Local SWITCH
off bounds checking.	Declarations". Then the conversion
	syntax above will execute an HP C/XL
	switch transfer to the correct
	label.
	The SPL "*" option has no HP C/XL
	equivalent. Just delete it.

6-2

Table 6-2. GO TO Statement Examples

SPL	HP C/XL Equivalent

1. GO LABEL1;	1. goto LABEL1;
GOTO LABEL1;	goto LABEL1;
GO TO LABEL1;	goto LABEL1;
2. SWITCH SWITCHLABEL:=L0,L1,L2;	2. #define SWITCHLABEL(X) \
...	switch (X) \
GOTO SWITCHLABEL(JUMP);	{ \
	case 0: goto L0; \
	case 1: goto L1; \
	case 2: goto L2; \
	}
	...
	SWITCHLABEL(JUMP) ;

DO Statement

Table 6-3. DO Statement

SPL	HP C/XL Equivalent

do-statement :	Similar to SPL:
DO loop-statement UNTIL condition-clause	do loop-statement
	while (! (condition-clause))

The loop-statement (which may be compound)	The loop-statement (which may be compound)
is executed until the condition-clause	is executed until the expression after
becomes true. It is always executed at	while becomes false. It is always executed
least once.	at least once.
	Note that this test is the reverse of the
	SPL version. As shown in the syntax above,
	the easiest conversion is to enclose the
	SPL condition-clause in parentheses,
	precede it with the logical NOT operator
	"!", and then add the outer parentheses
	required by HP C/XL.
	You could also just invert the condition,
	if it's a simple one. For example, "=="
	would become "!=" and ">=" would become
	"<".

6-3

Table 6-4. DO Statement Examples

SPL	HP C/XL Equivalent

DO BEGIN	do {
X := X + 1;	X = X + 1;
A(X) := B(X);	/*could also be: X++; */
END	A[X] = B[X];
UNTIL X=100;	}
	while (!(X==100));
	/*test could be: (X!=100)*/

WHILE Statement

Table 6-5. WHILE Statement

SPL	HP C/XL Equivalent

while-statement :	Similar to SPL:
WHILE condition-clause DO loop-statement	while (condition-clause) loop-statement

The loop-statement (which may be compound)	Same as SPL.
is executed only if and while the	
condition-clause remains true. If	The condition-clause must be enclosed in
condition-clause is false to begin with,	parentheses. Also, remove the keyword DO.
loop-statement is not executed at all.	

Table 6-6. WHILE Statement Examples

SPL	HP C/XL Equivalent

WHILE X <> 100 DO	while (X != 100)
BEGIN	{
X := X + 1;	X = X + 1; /*could be: X++; */
A(X) := B(X);	A[X] = B[X];
END;	}

6-4

FOR Statement

Table 6-7. FOR Statement

SPL	HP C/XL Equivalent

for-statement :	for-statement :		
1. FOR test-var := init-val	1. for (test-var = init-val ;		
UNTIL end-val	test-var <= end-val ;		
DO loop-statement	test-var ++)		
	loop-statement		
2. FOR test-var := init-val	2a. for (test-var = init-val ;		
STEP step-val	test-var <= end-val ;		
UNTIL end-val	test-var += step-val)		
DO loop-statement	loop-statement		
	2b. for (test-var = init-val ;		
	test-var >= end-val ;		
	test-var += step-val)		
	loop-statement		
3. FOR * test-var := init-val	3. for (flag = 1 , test-var = init-val ;		
UNTIL end-val	flag		test-var <= end-val ;
DO loop-statement	flag = 0 , test-var ++)		
	loop-statement		
4. FOR * test-var := init-val	4a. for (flag = 1 , test-var = init-val ;		
STEP step-val	flag		test-var <= end-val ;
UNTIL end-val	flag = 0 , test-var += step-val)		
DO loop-statement	loop-statement		
	4b. for (flag = 1 , test-var = init-val ;		
	flag		test-var >= end-val ;
	flag = 0 , test-var += step-val)		
	loop-statement		
	The generic syntax is:		
	for (init-expr ;		
	test-expr ;		
	incr-expr)		
	statement		

init-val , step-val , and end-val are	In general, the HP C/XL expressions are
evaluated and stored. test-val is set to	independent, and may even be omitted! The
init-val .	values in the expressions may be changed in
	the body of the for statement.
test-val is compared to end-val . If	
step-val is positive or omitted, and	The first expression (e.g., init-expr) is
test-val is less than or equal to end-val ,	evaluated only once, on initial entry into
loop-statement is executed. If step-val is	the for statement.
negative, and test-val is greater than or	
equal to end-val , loop-statement is	For each iteration, the second expression
executed. If the test fails, the for	(e.g., test-expr) is evaluated. If it is
statement terminates.	false, the for statement is terminated. If
	it is true, the loop-statement is executed,
After loop-statement is executed, test-val	the third expression (e.g., incr-expr) is
is incremented by step-val or 1, and it is	evaluated, and the for statement iterates.
compared with end-val as above.	
	In the simplest case, init-expr initializes
	a test-var , test-expr tests it, and
	incr-expr increments it.

6-5

	Formats 2a and 4a deal with the case where
	step-val is positive. Formats 2b and 4b
	handle the case where step-val is negative.
	There is no easy way to combine the
	formats.

In HP C/XL, the three expressions can actually contain multiple
expressions, separated by commas. The last or right-most becomes the
value of the expression. This is the method used to solve the SPL "*"
alternative, in formats 3 and 4. An arbitrary variable, flag is set to
1. Since flag is true on the first pass, it forces the execution of
loop-statement . On subsequent passes, it is 0 or false, so the normal
end testing takes over.

Table 6-8. FOR Statement Examples

SPL	HP C/XL Equivalent

FOR I:=ABC STEP 1 UNTIL 99	for (I = ABC ; I <= 99 ; I++)		
DO A(I):=B(I)-X;	A[I] = B[I]-X;		
FOR * I:=ABC STEP -1 UNTIL 0	for (ONCE = 1 , I = ABC ;		
DO A(I):=B(I)-X;	ONCE		I >= 0 ;
	ONCE=0 , I--)		
	A[I] = B[I]-X;		

The SPL FOR * construct may also be easily emulated by an HP C/XL
do-while statement, as illustrated by the following statements:

 I = ABC ;
 do A[I] = B[I]-X ; while (--I >= 0);

IF Statement

Table 6-9. IF Statement

-
SPL	HP C/XL Equivalent

-
if-statement	if-statement :
IF condition-clause THEN true-statement	if (condition-clause) true-statement
[ELSE false-statement]	[else false-statement]

-
| | |
| If condition-clause is true, true-statement | Same as SPL. |

6-6

is executed. If it is false, and the ELSE	
clause is present, else-statement is	
executed; if the ELSE clause is omitted,	
execution falls through to the statement	
after true-statement .	

-
If the ELSE clause is present,	Regardless of whether the else clause is
true-statement must not end with a	present, a simple true-statement must end
semicolon.	with a semicolon. (The terminating "}" of
	a compound statement implies the
	semicolon.)
	Note that the condition-clause is enclosed
	in parentheses and that THEN is deleted.

-

Table 6-10. IF Statement Examples

SPL	HP C/XL Equivalent

IF X<0 THEN Y:=0;	if (X<0) Y=0;
IF X>0 THEN	if (X>0)
BEGIN	{
Y:=0;	Y=0;
T:=V+10;	T=V+10;
END;	}
IF X=0 THEN X:=21	if (X==0) X=21;
ELSE	else
BEGIN	{
Y:=0;	Y=0;
T:=V+10;	T=V+10;
END;	}

6-7

CASE Statement

Table 6-11. CASE Statement

SPL	HP C/XL Equivalent

case-statement :	switch-statement :
CASE [*] index OF	switch (index)
BEGIN	" { "
statement0 ;	case 0: statement0 break ;
statement1	case 1: statement1 break ;
[;...][;]	[...]
END	[default: exception-statement]
	" } "

The statements in the BEGIN-END clause are	The statements in the { } clause are
implicitly numbered from 0. They may be	explicitly numbered with case number
compound statements.	labels. number may be any integer
	constant, including a character constant.
	There may be multiple simple, structured,
	or compound statements between labels.
	The break statement is required to emulate
	the operation of the SPL CASE statement,
	except if the SPL statement contains a GOTO
	statement.

index is evaluated and the corresponding	index is evaluated and execution transfers
statement in the BEGIN-END clause is	to the case label with the corresponding
executed. Then execution drops through to	number . Statements are executed in
the statement after the CASE statement.	sequential order from that point until
	(1) the end of the { } clause is reached,
	(2) a break statement is executed, or
	(3) a goto statement is executed.
	If (1) or (2) occurs, execution drops
	through to the statement after the switch
	statement.
	If (3) occurs, execution continues at the
	label specified.

If index is out-of-range, execution simply	The optional default label can be used to
drops through to the statement after the	trap out-of-range index values. If it is
CASE statement.	omitted, execution simply drops through to
	the statement after the switch statement.

The "*" option turns off bounds checking.	No equivalent. Just delete the "*".

6-8

Table 6-12. CASE Statement Examples

SPL	HP C/XL Equivalent

CASE N OF	switch (N)
BEGIN	{
A:=100; <<case 0, N=0>>	case 0: A=100; /* N==0 */
; <<case 1, N=1>>	break;
BEGIN <<case 2, N=2>>	case 1: break; /* N==1 */
A:=90;	case 2: A=90; /* N==2 */
B:=1;	B=1;
END;	break;
B:=100; <<case 3, N=3>>	case 3: B=100; /* N==3 */
END;	break;
	}

Case 1 is a null statement. It is required	Case 1 could be omitted entirely, since an
to fill out the range of values for N, even	index not represented by a case label
if N would never equal 1.	terminates the switch.
	To emulate the SPL operation, each case
	ends with a break statement to terminate
	the switch.
	Note that case 2 does not require braces
	around the two statements, although they
	could be used to clarify the BEGIN-END
	translation.

Again, please note the following:

In SPL, after each "case" of a CASE statement is executed, there is an
automatic transfer to the end of the CASE statement. In HP C/XL,
execution by default "falls through" to the next case. The break
statement causes control to transfer to the statement following the
switch statement, emulating SPL's action.

This and other features of the HP C/XL switch statement may afford
opportunities to simplify older SPL algorithms once the code has been
implemented in HP C/XL.

In the HP C/XL switch statement, if you include a case labelled default,
invalid indexes will transfer to this label. Using a default label is
good programming practice.

The HP C/XL case labels are simply entries into a series of statements.
They may occur in any order and there may be gaps in the numeric
sequence.

6-9

Procedure Call Statement

Table 6-13. Procedure Call Statement

SPL	HP C/XL Equivalent

procedure-call-statement :	function-call-statement :
1. procedure-id	1. function-id () ;
2. procedure-id ()	2. function-id () ;
3. procedure-id (actual-parm [,...])	3. function-id (actual-parm [,...]);

A procedure call causes a control transfer	Same as SPL, using a function call.
to a procedure, supplying any required	
parameters.	As shown in format 1, HP C/XL requires the
	parentheses even if there are no actual
Formats 1 and 2 are equivalent.	parameters.

actual-parm :	actual-parm :
a. simple-variable-id	a-r. & simple-variable-id
	a-v. simple-variable-id
b. array/pointer-id	b-r. array/pointer-id
	b-v. array/pointer-id " [" 0 "] "
c. procedure-id	c-r. function-id
d. entry-id	d-r. (No equivalent; must be recoded)
e. label-id	e-r. (No equivalent; must be recoded)
f. array/pointer-id (index)	f-r. & array/pointer-id " [" index "] "
	f-v. array/pointer-id " [" index "] "
g. arithmetic-expression	g-v. arithmetic-expression
h. logical-expression	h-v. logical-expression
i. assignment-statement	i-v. assignment-expression
j. *	j. (No equivalent; must be recoded)

Parameter formats a, b, and f may be	Parameter formats marked with "-r" are
pass-by-reference or pass-by-value. Their	pass-by-reference. Formats marked with
pass-by-value use is also included in	"-v" are pass-by-value. In HP C/XL, while
formats g and h. Formats c, d, and e are	all parameters are pass-by-value,
pass-by-reference only. Formats g, h, and	pass-by-reference is achieved by passing a
i are pass-by-value only. Format j may be	pointer value to a pointer parameter.
either.	Function-ids are passed as pointers;
	unsubscripted array-ids are passed as
	pointers to their first elements. Array,
	pointer, and function formal parameters
	expect pointer actual parameters.

Whether an actual-parm is pass-by-value or	Similar to SPL, except that HP C/XL
pass-by-reference depends on the definition	performs no type checking whatsoever.
of the procedure. SPL performs strict	
type-checking to ensure that parameters	The programmer must ensure that pointers
match.	are passed to pointers, integers are passed
	to integers, and reals are passed to reals.
	Note that all char, enum, and int types are
	expanded to [unsigned] long int types, and
	float is expanded to double when the actual
	parameters are evaluated. The passed long
	int, double, and pointer values are
	converted to the declared formal type when
	they are received by the function.

6-10

	Fortunately, because SPL is so strict, the
	conversion boils down to getting the
	pass-by format correct.

Table 6-14. Procedure Call Statement Examples

SPL	HP C/XL Equivalent

PROCEDURE P1 (VALP);	void P1 (VALP)
VALUE VALP; INTEGER VALP;	unsigned short VALP;
BEGIN	{
GVAR := VALP;	GVAR = VALP;
END;	}
PROCEDURE P2 (REFP);	void P2 (REFP)
INTEGER REFP;	unsigned short *REFP;
BEGIN	{
GVAR := REFP;	GVAR = *REFP;
END;	}
...	...
<<main program>>	/*main function*/
...	...
P1(V); <<pass-by-value>>	P1(V); /*pass-by-value*/
P2(V); <<pass-by-reference>>	P2(&V); /*pass-by-reference*/
...	...

In the examples above, notice that when P2 was called (in HP C/XL), the
address of the variable was explicitly specified with the "&" operator.
If the actual parameter had been an unsubscripted array-id or a string
literal, the "&" would have been omitted. In HP C/XL, if an identifier A
is declared to be an array, the following function call expressions are
equivalent:

 P3(A); and P3(&A[0]);

The data type void specifies that the function does not return a value.
See "PROCEDURE Declaration" for details.

String Literals

HP C/XL allows string literals to be passed as actual parameters, which
is not possible in SPL. Thus, the following SPL code

 MOVE BARRAY:="test string";
 PROCB(BARRAY); <<called with byte array BARRAY>>

used to pass a string to an SPL procedure via a byte array, may be
rewritten in HP C/XL as:

 PROCB("test string");

HP C/XL will create storage for the string, and pass its address to PROCB
as a "pointer to char" (a byte address). This is a more straightforward

6-11

means of accomplishing the same operation as the SPL example.

Stacking Parameters

By directly manipulating the hardware stack in MPE V, SPL programmers
can set up parameters to a procedure directly and then call the procedure
using "*" actual parameters.

There is no equivalent in HP C/XL. However, replacing the "*"s in the
parameter list with the stacked values is functionally equivalent.
(Usually, the procedure call is preceded by assignments to TOS, which
can be thus eliminated.)

This technique is used in SPL mostly to optimize runtime performance,
not
to gain otherwise unavailable functionality. A simple rewrite will
eliminate any explicit references to the stack.

Missing Parameters in Procedure Calls

If an SPL procedure is declared with OPTION VARIABLE, parameters may be
omitted from the actual parameter list when the procedure is called.

HP C/XL provides the varargs macros to enable variable-length actual
parameter lists. This feature is described further in "Options", and in
the HP C/XL Library Reference Manual .

Passing Labels as Parameters

SPL has an elaborate facility for passing labels to procedures as actual
parameters. When control is transferred to the label, the procedure
automatically performs an exit from itself (and from any other proce-
dures in the calling sequence between this one and the one containing the
passed label) prior to transferring control to the label location. This
effectively "unwinds" a stack of procedure calls, and is most often used
in error recovery.

HP C/XL does not permit labels to be passed as parameters. These
situations can (and must) be rewritten, possibly by declaring a global
flag variable to indicate error conditions. This flag should be tested
by functions to determine if processing is to be terminated prematurely.

Another approach is to use the longjmp and setjmp functions described in
the HP C/XL Library Reference Manual .

Passing Procedures as Parameters

An SPL procedure (e.g., A) may be passed to another procedure (e.g., B)
as a pass-by-reference parameter. When A is called from B, the actual
parameters supplied in the parameter list at the time of the call are
assumed to be pass-by-reference. Pass-by-value actual parameters must
be placed on the stack and specified with the "*" symbol in the procedure

6-12

call. OPTION VARIABLE passed procedures require more work, including
the fabrication on the stack of a special mask word.

In HP C/XL, a function-id may be passed as an actual parameter. There
are no particular restrictions on the actual parameter list when the
passed function is called. For example,

 main()
 {
 void callf(), calledf(); /* declares two functions */

 callf(calledf); /* execute callf, passing calledf */
 } /* end of main */

 void callf(func) /* function to call a function */
void (*func)(); /* func is pointer to function returning void */

 {
 (void) func(); /* call the passed function */
 } /* end of callf */

 void calledf() /* function that will be passed */
 {
 printf("called calledf!\n");
 } /* end of calledf */

For further information on OPTION VARIABLE cases, see "Missing Parame-
ters in Procedure Calls" above.

Subroutine Call Statement

SPL subroutines may be called from the procedures in which they are
declared.

HP C/XL does not allow nested functions. Subroutines must be converted
either to #define macro directives to generate code inline, or to
functions that may be callable by other functions. See "SUBROUTINE
Declaration" for further details.

The subroutine call itself may not require any modification at all. If
you use a #define macro directive, make sure the left parenthesis in both
the macro directive and the macro reference follows the identifier with
no spaces. e.g., "mysubcall(arg)".

6-13

RETURN Statement

Table 6-15. RETURN Statement

SPL	HP C/XL Equivalent

return-statement :	Similar to SPL:
1. RETURN [count]	1. return ;
2. procedure-id := procedure-id-value	2a. return procedure-id-value ;
:	2b. return-id = procedure-id-value
RETURN [count]	:
	return return-id ;

Format 1 is a return from a procedure that	Format 1 is equivalent to SPL.
does not return a value.	
	Format 2 is equivalent to SPL.
Format 2 is a return from a function	
procedure that returns a value assigned to	Format 2b is a simple way to convert the
the procedure-id .	SPL code. Simply change the use of the
	procedure-id inside the procedure to
The count is the number of words to delete	another, local same-type identifier, here
from the stack.	called return-id . Then append this
	return-id to the return statement.
	In any case, count must be recoded or
	ignored.

RETURN is used to exit from a procedure at	Same as SPL for void functions.
a point other than the END of the procedure	
body.	Functions used in expressions require a
	returned value. The only way to return a
	value is with the return statement.
	For functions that return a value, add a
	return statement before the final brace.

See "Data Type" for examples and additional information.

6-14

7- 1

Chapter 7 Machine Level Constructs

This chapter discusses conversion issues related to sections in Chapter
6 of the Systems Programming Language Reference Manual .

ASSEMBLE Statement

Table 7-1. ASSEMBLE Statement

SPL	HP C/XL Equivalent

assemble-statement :	No equivalent.
ASSEMBLE	
({[label-id :] instruction }[;...])	

Allows direct access to MPE V machine	Many of the instructions have functional
instructions.	equivalents in HP C/XL. See the example
	below.
	In general, register manipulation
	instructions will have to be redesigned and
	rewritten, whereas memory reference
	instructions frequently have
	straightforward replacements.

Example:	HP C/XL version:
ASSEMBLE(INCM ivar); increment memory	++ivar; same operation

DELETE, PUSH, SET, and WITH Statements

The SPL DELETE, PUSH, SET, and WITH statements directly manipulate the
MPE V hardware stack and registers.

In the absence of any assumed stack environment, HP C/XL has no direct
equivalent constructs. A stack could be emulated in an array, but, in
most cases, a simple redesign is preferable.

7- 2

8-: 1

Chapter 8 Procedures, Intrinsics and Subroutines

This chapter discusses conversion issues that correspond to sections in
Chapter 7 of the Systems Programming Language Reference Manual .

Subprogram Units

Table 8-1. Subprogram Units

SPL	HP C/XL Equivalent

Procedure	Function

Intrinsic	Intrinsic

Subroutine, global	static function or #define directive.

Subroutine, local (in procedure)	No equivalent.
	Convert to inline code, #define directive,
	or separate static function.

Much of the information about declarations has been discussed in detail
in Chapter 4. This chapter will focus primarily on the special
requirements of procedures. For more on subroutines, see "SUBROUTINE
Declaration" below.

In the following sections, the SPL and HP C/XL type syntax elements
refer to the following simple variable types:

SPL	HP C/XL Equivalent

INTEGER	short int

DOUBLE	long int

| | |

8- 2

| LOGICAL | unsigned short int |
| | |

BYTE	unsigned char OR unsigned short int

REAL	float

LONG	double

PROCEDURE Declaration

Table 8-2. PROCEDURE Declaration

SPL	HP C/XL Equivalent

procedure-declaration :	function-definition :
1. [type] PROCEDUREprocedure-id	1. [static] [type
	void] function-id
(formal-parm [,...]) ;	
	(formal-parm [,...])
[VALUE formal-parm [,...] ;]	
	formal-parm-decl [;...] ;
formal-parm-decl [;...] ;	
	function-body
[OPTION option [,...] ;]	
	2. [static] [type
[procedure-body ;]	void] function-id ()
2. [type] PROCEDUREprocedure-id	function-body
[OPTION option [,...] ;]	3. extern [type
	void] function-id ()
[procedure-body ;]	
3a. [type] PROCEDUREprocedure-id	
OPTION EXTERNAL [, option] [...] ;	
3b. [type] PROCEDUREprocedure-id	
OPTION FORWARD [, option] [...] ;	

formal-parm-decl :	formal-parm-decl :
a. type formal-parm [,...]	a.[type] formal-parm [,...]
b. [type] ARRAY formal-parm [,...]	b.[type]{ formal-parm " [" "] " } [,...]
c. [type] POINTER formal-parm [,...]	c. [type] {* formal-parm } [,...]
d. [type] PROCEDUREformal-parm [,...]	d. [type] { formal-parm ()} [,...]
e. LABEL formal-parm [,...]	e. (labels cannot be passed)

option :	storage :
The CHECK, EXTERNAL, FORWARD, INTERNAL,	The extern and static storage classes are
INTERRUPT, PRIVILEGED, SPLIT, UNCALLABLE,	discussed in "Options" below.
and VARIABLE options are discussed in	

8-: 3

| "Options" below. | |
| | |

procedure-body :	function-body :
a. statement	a. " { " statement " } "
b. BEGIN	b. " { "
[local-data-declarations]	[local-declarations]
[external/intrinsic-declarations]	[statement [...]]
[local-subroutine-declarations]	" } "
[statement [;...]]	
END	

A procedure declaration:	A function definition:
* defines a procedure identifier	* defines a function identifier
* specifies whether the procedure will	* specifies whether the function will NOT
return a value (type)	return a value (void)
* describes the parameters: number,	* describes the parameters: number, type
type, pass-by-value or	(all are pass-by-value)
pass-by-reference	* specifies a storage class
* specifies any options	* declares local variables
* declares local variables	* includes the statements of the function
* includes the statements of the	body
procedure body	

Procedure declarations cannot be nested,	Same as SPL, using the extern storage
except that a procedure with OPTION	class.
EXTERNAL and no body may be declared in a	
procedure's local declarations.	

Data Type

Table 8-3. Data Type

SPL	HP C/XL Equivalent

Default type: None	Default type: int (= long int)

If type is specified, the procedure is a	Functions normally return a value and may
function procedure, which may be called in	be called in expressions. The value
an expression. The value returned is the	returned may be any type except array or
type specified.	another function.

If type is omitted, the procedure does not	If the void type is specified, the function
return a value and cannot be used in	does not return a value and cannot be used
expressions.	in expressions.

A value is returned by assigning it to the	A value is returned in a return statement:
procedure-id in the body of the procedure:	

8- 4

	return expression ;
procedure-id := expression	
	For easier conversion, declare a local
For example:	variable, e.g., returnvalue, and replace
	the procedure-id with it in the function
INTEGER PROCEDURE FUNC ;	body. Then replace all the SPL RETURN
BEGIN	statements with "return returnvalue" Add
...	one before the final "}":
FUNC := Y + Z ;	
...	short int FUNC () ;
RETURN ;	{
...	short int returnvalue ;
FUNC := A - B ;	...
...	returnvalue := Y + Z ;
END ;	...
	return returnvalue ;
	...
	returnvalue := A - B ;
	...
	return returnvalue ;
	}

Parameters

Table 8-4. Parameters

SPL	HP C/XL Equivalent

Formal parameters are defined by type (in	Formal parameters are defined by type (in
the formal-parm-decl section) and by	the formal-parm-decl section). All are
whether they are pass-by-reference (the	pass-by-value.
default) or pass-by-value (named in the	
VALUE section).	

Simple variable and pointer formal	Simple variable formal parameters expect a
parameters may be pass-by-value or	value. Array, function, and pointer formal
pass-by-reference. Array, procedure, and	parameters expect a pointer value.
label formal parameters are	Consequently, the operation for arrays and
pass-by-reference only.	functions is functionally equivalent to SPL
	pass-by-reference. The operation for
"Reference" formal parameters expect the	simple variables and pointers is
address of the actual parameter. "Value"	functionally equivalent to SPL
formal parameters expect the value of the	pass-by-value.
actual parameter.	
	(Labels cannot be passed.)

At the procedure call, if the formal	At the function call, the actual parameters
parameter is pass-by-value, the value of	are evaluated and converted to standard
the actual parameter is passed.	types. (See also "HP C/XL Rules for
	Automatic Numeric Type Conversion".)
If the formal parameter is	
pass-by-reference and the actual parameter	* [unsigned] char and short int become
is an appropriate identifier, array	[unsigned] int (= [unsigned] long int)
reference or pointer reference, the address	* float becomes double
of the actual parameter is passed; if the	* array identifiers become "pointers to
actual parameter is a constant or	array of type T"
expression, then its value is passed as the	* function identifiers become "pointers
address.	to function returning type T"
	* pointers are unchanged
It is possible to pass addresses in SPL as	* structures are unchanged (they are
type LOGICAL or INTEGER parameters. Such	copied into the function space)
operations must be examined carefully to	
determine the function performed in the	The conversions are based on the actual
original SPL code.	parameters, not on the corresponding formal

8-: 5

	parameters. The formal parameters "expect"
	the converted forms and reconvert them
	accordingly. HP C/XL does not check
	parameters.

Addresses are 16-bit pointers.	Addresses are 32-bit pointers.

The HP C/XL equivalent of a formal "reference" simple variable or point-
er parameter is a pointer to simple variable or pointer to pointer,
respectively. This amounts (mostly) to the addition of a leading "*"
dereference operator everywhere the formal parameter is used in the
function, in the form "* formal-parm ".

The HP C/XL equivalent of an actual "reference" simple variable or
pointer parameter is the address of the simple variable or pointer,
respectively. The address is obtained with the "&" address operator, in
the form "& actual-parm ".

Since array-ids (no subscript) are passed as pointers, they are
implicitly pass-by-reference. That is, they may be passed as actual
parameters and used as formal parameters without the "&" and "*"
operators. If an array cell is passed by reference to an array or
pointer formal parameter, it requires the "&" operator, as in
"& array-id [cell]".

Options

Table 8-5. Options

SPL	HP C/XL Equivalent

CHECK level	No equivalent.
Specifies varying degrees of parameter	HP C/XL performs no parameter checking.
checking for an external procedure.	

EXTERNAL (Table 8-2, format 3a)	extern storage class (Table 8-2, format 3)
Defines the name, type, and parameters of a	The formal-parm list is omitted because HP
procedure which exists external to the	C/XL performs no parameter checking on
current program.	functions.

FORWARD (Table 8-2, format 3b)	extern storage class (Table 8-2, format 3)
Specifies that the procedure will be	The function may be declared elsewhere in
declared fully later in the program.	the same compilation unit or in a separate
Allows a procedure to be called prior to	unit. If a function is not declared before
its declaration.	it is called, its type defaults to
	"function returning int".

INTERNAL	No direct equivalent.

8- 6

Prevents the procedure from being called	The static storage class provides similar
from another segment. Generally used to	functionality. A static function-id will
keep the procedure-id local.	not be exported to the linker, and
	therefore will be unknown to other
	compilation units.

INTERRUPT	No equivalent.
Specifies an external interrupt procedure.	
The purpose is highly hardware-dependent.	

PRIVILEGED	No equivalent.
Allows the procedure to execute in	
privileged mode.	

SPLIT	No equivalent.
Aids privileged users running in	
split-stack mode.	

UNCALLABLE	No equivalent.
Prevents the procedure from being called by	
code not executing in privileged mode.	

VARIABLE	No direct equivalent.
Lets the procedure be called with a varying	The HP C/XL library header file varargs.h
number of actual parameters. The mechanism	contains macros that allow you to write
for determining how many actual parameters	functions with varying actual parameters.
are passed uses Q-register addressing.	Insert the file in your program with the
	directive:
	#include <varargs.h>
	See the HP C/XL Library Reference Manual
	for details.

Local Declarations

Table 8-6. Local Declarations

SPL	HP C/XL Equivalent

All variables declared within a procedure	Same as SPL.
are "local" to that procedure; they may not	
be referenced outside of the scope of the	
procedure.	

Table 8-7 lists the three types of local variables in SPL, along with
their HP C/XL equivalents.

Table 8-7. Local Variable Storage Classes

8-: 7

SPL	HP C/XL Equivalent

standard	[auto] (the default case)

OWN	static

EXTERNAL	extern

OWN Variables

Table 8-8. OWN Variables

SPL	HP C/XL Equivalent

Standard variables declared local to a	Same as SPL, using auto variables (the
procedure are assigned new space each time	default).
a procedure is invoked, the space being	
released when the procedure is exited.	

If a variable is declared as OWN, space is	Same as SPL, using static variables.
allocated outside of the dynamic scope of	
the procedure, in the DB-relative area.	
The variable is still known only to the	
procedure, and it retains its value between	
successive calls to the procedure. If an	
OWN variable is initialized, it is	
initialized once, at the start of the	
program, not every time the procedure is	
called.	

Local Simple Variable Declarations

Standard Local Variables.

Table 8-9. Standard Local Simple Variables

SPL	HP C/XL Equivalent

standard-local-simple-variable-declaration :	simple-variable-declaration :
type variable-decl [,...] ;	[type] variable-decl [,...] ;

variable-decl :	variable-decl :
1a. variable-id	1a. variable-id
1b. variable-id := initial-value	1b. variable-id = initial-value
2a. variable-id = register	
2b. variable-id = register sign offset	
3a. variable-id = ref-id	

8- 8

| 3b. variable-id = ref-id sign offset | |
| | |

type is required.	Default type: int (= long int)

Storage is allocated each time the procedure	Same as SPL.
is called. If an initial value is defined,	
it will be assigned each time the procedure	
is called.	

Simple variables in forms 2 and 3 are usually various types of data
equivalences. They may be converted to pointers or union equivalences,
depending on the requirements of the program. See "ARRAY Declaration"
for further examples.

OWN Simple Variables.

Table 8-10. OWN Local Simple Variables

SPL	HP C/XL Equivalent

own-simple-variable-declaration :	static-simple-variable-declaration :
OWN type variable-decl [,...] ;	static [type] variable-decl [,...] ;

variable-decl :	variable-decl :
1a. variable-id	1a. variable-id
1b. variable-id := initial-value	1b. variable-id = initial-value

type is required.	Default type: int (= long int)

An OWN local variable is allocated storage	Similar to SPL, using a static local
global to the procedure, in the DB-relative	variable.
area. It retains its values between	
successive calls to the procedure.	
If an initial value is declared for an OWN	
variable, the variable is initialized once,	
at the start of the program, not every time	
the procedure is called.	

8-: 9

EXTERNAL Simple Variables.

Table 8-11. EXTERNAL Local Simple Variables

SPL	HP C/XL Equivalent

external-simple-variable-declaration :	extern-simple-variable-declaration :
EXTERNAL type variable-id [,...] ;	extern [type] variable-id [,...] ;

type is required.	Default type: int (= long int)

An EXTERNAL local variable refers to a	Similar to SPL.
global variable that is declared GLOBAL in	
a separate compilation unit. The storage	An extern local variable refers to a global
is allocated by the other unit.	variable that is not declared static in a
	separate compilation unit. The storage is
	allocated by the unit that defines it.

See "Types of Declarations" for more detail.

Local Array Declarations

Standard Local Arrays.

Table 8-12. Standard Local Arrays

SPL	HP C/XL Equivalent

standard-local-array-declaration :	array-declaration :
[type] ARRAY	1b with lower = 0.
[local-array-decl ,] [...]	[type] array-id " [" cells "] " ;
{ local-array-decl	
constant-array-decl } ;	1a; 1b with lower <> 0.
	[type] array-ref " [" cells "] " ;
local-array-decl :	
1a. array-id (lower : upper)	[type] * array-id
1b. array-id (lower : upper) = Q	= & array-ref " [" index "] " ;
2. array-id (var-lower : var-upper)	
	10 with lower = 0.
3. array-id (@) = Q	
	static [type] array-id " [" cells "] " init:
4. array-id (*) = Q	
5a. array-id (@)	10 with lower <> 0.
5b. array-id (@) = register sign offset	static [type] array-ref " [" cells "] "init ;
6. array-id (*)	
	static [type] * array-id

8- 10

7. array-id (*) = register sign offset	
	= & array-ref " [" index "] " ;
8a. array-id (*) = ref-id	
8b. array-id (*) = ref-id sign offset	init :
	= " { " value [,...] " } "
9. array-id (*) = ref-id (index)	
	index :
constant-array-decl :	Cell number in array-ref of cell that
	corresponds to cell zero in SPL array.
10. array-id (lower : upper) = PB	
	_ _
:= value-group [,...]	
	The other SPL forms establish an
value-group :	equivalence relative to other declared data
	(not just arrays). Depending on their
{ initial-value	actual use, they may be converted to HP
repeat-factor (initial-value [,...])}	C/XL pointer or union types, or #define
	directives. If their relationships are
	fairly simple, pointers can be used.

Default type: LOGICAL	Default type: int (= long int)

The general rules for global array declarations also apply to local ar-
ray declarations. See "ARRAY Declaration" for details and other con-
version suggestions.

Standard arrays declared local to a procedure are allocated each time
the procedure is called, and may not be referenced outside of the pro-
cedure.

Standard arrays (except for form 10) cannot be initialized.

Array form 10 is a special constant array declaration that is stored in
the code segment and cannot be modified while the program is running.
The suggested conversion to a static array (equivalent to an OWN array)
should be effective. Care must be taken with subsequent code changes,
since the converted static array can be modified by the program.

Summary of SPL Local Array Forms.

1a. Indirect; bounded; variable is pointer to cell zero; pointer in
 next Q-relative location; pointer IS allocated; array begins in
 next Q+ location; array IS allocated.

1b. Direct; bounded; variable is cell zero; lower in next Q+ location;
 array IS allocated.

2. Indirect; variable bounds; variable is pointer to cell zero;
pointer IS allocated when procedure is called; array IS allocated

 when procedure is called.

3. Indirect; unbounded; variable is pointer to cell zero; pointer in
 next Q-relative location; pointer NOT allocated; array NOT
 allocated.

8-: 11

4. Direct; unbounded; variable is cell zero; cell zero in next
 Q-relative location; array NOT allocated.

5a. Indirect; unbounded; variable is pointer to cell zero; pointer in
 next Q-relative location; pointer IS allocated; array NOT
 allocated.

5b. Indirect; unbounded; variable is pointer to cell zero; pointer in
specified DB-, Q-, or S-relative location; pointer NOT allocated;

 array NOT allocated.

6. Indirect; unbounded; variable is pointer to cell zero; pointer in
 next Q-relative location; pointer IS allocated; array NOT
 allocated.

7. Direct; unbounded; variable is cell zero; cell zero in specified
 DB-, Q-, or S-relative location; array NOT allocated.

8a. Direct (if ref-id is direct array or simple variable); unbounded;
variable is cell zero; cell zero in specified location; array NOT

 allocated.

 Indirect (if ref-id is pointer or indirect array); unbounded;
variable is pointer to cell zero; cell zero in ref-id location;
pointer in next Q-relative location IF one %id% type is BYTE and

other is not; ELSE pointer location shared with ref-id ; pointer IS
 allocated; array NOT allocated.

8b. Direct; unbounded; variable is cell zero; cell zero in specified
 location; array NOT allocated.

9. Direct (if ref-id is direct array); unbounded; variable is cell
 zero; cell zero in specified location; array NOT allocated.

 Indirect (if ref-id is pointer or indirect array); unbounded;
variable is pointer to cell zero; cell zero in specified location;
pointer in next Q-relative location IF specified location is not
ref-id cell zero OR IF one array is BYTE and other is not; ELSE
pointer location shared with ref-id ; pointer IS allocated; array

 NOT allocated.

Array forms 1a, 1b, 3, 4, 5a, 5b, 6, 7, 8a, 8b, and 9 correspond directly
to global array forms 1a, 1b, 2a, 3a, 4a, 4b, 5, 6, 7a, 7b, and 8,
respectively, except that they are Q-relative rather than DB-relative.

Array forms 3, 4, 5, 6, 7, 8, and 9 imply various methods of data
equivalencing or "overlays".

Only array form 10 may be initialized.

Comparison of Specific Local Array Declarations. See also "ARRAY
Declaration".

8- 12

Array Format 2: Bounded Indirect Variable Array.

SPL	HP C/XL Equivalent

	No direct equivalent.
INTEGER ARRAY ABC (LOW'VAR : HIGH'VAR)	
This is an SPL "indirect" array with	Dynamic arrays are not allowed, but there
variable bounds. The bounds are evaluated	are library routines, such as malloc, to
each time the procedure is called, and	allocate memory dynamically and assign an
storage is allocated accordingly.	address to an array name. See the HP C/XL
	Library Reference Manual for details.

Array Format 10: Bounded Direct Constant Array.

SPL	HP C/XL Equivalent

REAL ARRAY ABC(0:9) = PB	static float ABC [10]
:= 1,2,3,4,5,6,7,8,9,10;	= {1,2,3,4,5,6,7,8,9,10};
This is a "constant" array. It is	This is not an exact equivalent. There is
initialized in the code segment and cannot	no protection against inadvertent
not be modified.	modification.

OWN Local Arrays.

Table 8-13. OWN Local Arrays

SPL	HP C/XL Equivalent

own-array-declaration :	static-array-declaration :
OWN [type] ARRAY	1 with lower = 0.
[own-array-decl ,] [...]	static [type] array-id " [" cells "] " ;
init-own-array-decl ;	
	1 with lower <> 0.
own-array-decl :	static [type] array-ref " [" cells "] "
1. array-id (lower : upper)	
	static [type] * array-id
init-own-array-decl :	= & array-ref " [" index "] " ;
2. array-id (lower : upper)	
	2 with lower = 0.
:= value-group [,...]	
	static [type] array-id " [" cells "] " init ;
value-group :	
	2 with lower <> 0.
{ initial-value	
repeat-factor (initial-value [,...])}	static [type] array-ref " [" cells"] "init :

8-: 13

	static [type] * array-id
	= & array-ref " [" index "] " ;
	init :
	= " { " value [,...] " } "
	index :
	Cell number in array-ref of cell that
	corresponds to cell zero in SPL array.

Default type: LOGICAL	Default type: int (= long int)

An OWN local array is allocated storage	Same as SPL, using a static local array.
global to the procedure, in the DB-relative	
area. It retains its values between	
successive calls to the procedure.	
If an initial value is declared for an OWN	
array, the variable is initialized once, at	
the start of the program, not every time	
the procedure is called.	

EXTERNAL Local Arrays.

Table 8-14. EXTERNAL Local Arrays

SPL	HP C/XL Equivalent

external-array-declaration :	extern-array-declaration :
EXTERNAL [type] ARRAY	Direct with lower = 0.
{ array-id {(*)	extern [type] array-id " [" "] " ;
(@)}} [,...] ;	
	Indirect, or direct with lower <> 0.
(*) signifies a direct array.	
	extern [type] * array-id
(@) signifies an indirect array.	

Default type: LOGICAL	Default type: int (= long int)

An EXTERNAL local array refers to a global	Similar to SPL.
array that is declared GLOBAL in a separate	
compilation unit. The storage is allocated	An extern local array refers to a global
by the other unit.	array that is not declared static in a
	separate compilation unit. The storage is
	allocated by the other unit.

See "Types of Declarations" for further details.

8- 14

Local Pointer Declarations

See "POINTER Declaration" for further details.

Standard Local Pointers.

Table 8-15. Standard Local Pointers

SPL	HP C/XL Equivalent

standard-local-pointer-declaration :	pointer-declaration :
[type] POINTER ptr-decl [,...] ;	[type] ptr-decl [,...] ;
ptr-decl :	ptr-decl :
1a. ptr-id	1a. * ptr-id
1b. ptr-id := @ ref-id	1ba.* ptr-id = ref-id
1c. ptr-id := @ ref-id (index)	1bv.* ptr-id = & ref-id
2a. ptr-id = ref-id	1c.* ptr-id = & ref-id " [" index "] "
2b. ptr-id = ref-id sign offset	
	1ba: ref-id is an array or pointer id.
3a. ptr-id = register	
	1bv: ref-id is a simple variable.
3b. ptr-id = register sign offset	
4. ptr-id = offset	

Default type: LOGICAL	Default type: int (= long int)

Pointers are 16-bit values containing	Pointers are 32-bit values containing
DB-relative addresses.	standard MPE XL addresses.
	Overlays of pointers and other data types
	must be recoded.

OWN Local Pointers.

Table 8-16. OWN Local Pointers

SPL	HP C/XL Equivalent

own-local-pointer :	static-local-pointer :
OWN [type] POINTER ptr-decl [,...] ;	static [type] ptr-decl [,...] ;
ptr-decl :	ptr-decl :
ptr-id	* ptr-id

| | |

8-: 15

| Default type: LOGICAL | Default type: int (= long int) |
| | |

An OWN local pointer is allocated storage	Same as SPL, using a static local array.
global to the procedure, in the DB-relative	
area. It retains its values between	
successive calls to the procedure.	

OWN pointers cannot be initialized.	static pointers may be initialized, using
	the syntax given for forms 1b and 1c in
	"POINTER Declaration".
	The pointer is initialized once, at the
	start of the program, not every time the
	function is called.

EXTERNAL Local Pointers.

Table 8-17. EXTERNAL Local Pointers

SPL	HP C/XL Equivalent

external-local-pointer :	extern-local-pointer :
EXTERNAL type ptr-id [,...] ;	extern type ptr-id [,...] ;

Default type: LOGICAL	Default type: int (= long int)

An EXTERNAL local pointer refers to a	Similar to SPL.
global pointer that is declared GLOBAL in a	
separate compilation unit. The storage is	An extern local pointer refers to a global
allocated by the other unit.	pointer that is not declared static in a
	separate compilation unit. The storage is
	allocated by the other unit. See "Types of
	Declarations".

Local LABEL Declarations

See "LABEL Declaration" for further details.

Table 8-18. Local LABEL Declaration

SPL	HP C/XL Equivalent

label-declaration :	No equivalent.
LABEL label-id [,...] ;	

Declaration of labels is optional.	Labels are not declared.

8- 16

| | Remove the SPL label declarations. |
| | |

The scope of a local label is the	Same as SPL.
procedure.	

Local SWITCH Declarations

See "SWITCH Declaration" for further details.

Table 8-19. Local SWITCH Declaration

SPL	HP C/XL Equivalent

switch-declaration :	define-directive :
SWITCH switch-id := label-id0 [,...] ;	#define switch-id (X) \
	switch (X) \
	" { " \
	case 0: goto label-id0 ; \
	case 1: goto label-id1 ; \
	[...]
	" } "
	...
	#undef switch-id

switch-reference :	define-reference :
GOTO switch-id (index)	switch-id (index)

The scope of a local SWITCH declaration is	The scope of a #define directive is not
the procedure.	local. It is known to all following source
	code. To turn it off, insert the #undef
	directive at the end of the function.

Local ENTRY Declaration

Table 8-20. Local ENTRY Declaration

SPL	HP C/XL Equivalent

entry-declaration :	No direct equivalent.
ENTRY label-id [,...] ;	

8-: 17

You may emulate multiple entry points into an SPL procedure by adding a
parameter to the HP C/XL function, and coding a switch statement in the
function to goto the appropriate labels based on the value of the
parameter. See "Local SWITCH Declarations" above for the format.

Entry point identifiers used in calling routines must be changed to the
procedure identifier. Alternatively, global #define directives could be
used to equate the entry point identifiers with the procedure identifi-
er.

You might also create #define macro directives with different names,
each of which calls the original function with the index parameter sup-
plied as a constant.

Or you might rewrite the procedure as several HP C/XL functions named by
the entry point identifiers.

Local DEFINE Declaration and Reference

See "DEFINE Declaration and Reference" for further details.

Table 8-21. DEFINE Declaration and Reference

SPL	HP C/XL Equivalent

define-declaration :	define-directive :
DEFINE { define-id = text #} [,...] ;	#define define-id text
	...
	#undef define-id

The scope of a local DEFINE declaration is	The scope of a #define directive is not
the procedure.	local. It is known to all following source
	code. To turn it off, insert the #undef
	directive at the end of the function.

Local EQUATE Declaration and Reference

See "EQUATE Declaration and Reference" for further details.

Table 8-22. Local EQUATE Declaration and Reference

SPL	HP C/XL Equivalent

equate-declaration :	define-directive :
EQUATE { equateid = equate-expr }[,...];	#define equateid equate-expr
	...

8- 18

	#undef equate-id

The scope of a local EQUATE declaration is	The scope of a #define directive is not
the procedure.	local. It is known to all following source
	code. To turn it off, insert the #undef
	directive at the end of the function.

Procedure Body

See syntax for procedure-body and function-body in Table 8-2.

Table 8-23. Procedure Body

SPL	HP C/XL Equivalent

Contains the local declarations and	Same as SPL.
statements of the procedure.	

The end of the body generates an exit	Same as SPL.
instruction. Additional exit points may be	
specified with the RETURN statement.	Additional exit points may be specified
	with the return statement.

See also "RETURN Statement" and "Data Type" above.

INTRINSIC Declarations

Table 8-24. INTRINSIC Declarations

SPL	HP C/XL Equivalent

intrinsic-declaration :	pragma-directive :
INTRINSIC [(file)] intrinsic-id [,...]	1. #pragma intrinsic
	{ intrinsic-id [user-id]} [,...]
	2. #pragma intrinsic_file " file "
	3. #pragma intrinsic_file ""

Without file , the intrinsic-id is sought in	Similar to SPL.
the system intrinsic file.	
	The intrinsic_file pragma establishes the
If file is given, the intrinsic-id is	intrinsic file where all subsequent
sought in the user-defined file file .	intrinsic pragmas will search.
	If intrinsic_file is not given, or if form
	3 is used, intrinsic definitions are sought
	in the file SYSINTR.PUB.SYS.

8-: 19

	The user-id option allows you to rename the
	intrinsic-id for references in your
	compilation unit.

Table 8-25. INTRINSIC Declaration Examples

SPL	HP C/XL Equivalent

INTRINSIC FREADDIR;	#pragma intrinsic FREADDIR
	#pragma intrinsic_file "MYINTRS"
INTRINSIC (MYINTRS) MYFREAD;	#pragma intrinsic MYFREAD
	#pragma intrinsic_file ""

The first declaration seeks the intrinsic	The first pragma directive seeks the
FREADDIR in the system intrinsic library.	intrinsic FREADDIR in the system intrinsic
The second seeks MYFREAD in the user	library SYSINTR.PUB.SYS. The second
library named MYINTRS.	redirects subsequent searches to the user
	intrinsic file named MYINTRS. The third
	seeks the intrinsic MYFREAD in MYINTRS. The
	fourth resets the search to the system file
	SYSINTR.PUB.SYS.

The HP C/XL pragmas are described further in the HP C/XL Reference Manual
Supplement . The construction of user intrinsic files is discussed in
the HP Pascal Programmer's Guide .

SUBROUTINE Declaration

Table 8-26. SUBROUTINE Declaration

SPL	HP C/XL Equivalent

subroutine-declaration :	Global. function-definition :
1. [type] SUBROUTINE subroutine-id	1. static [type
	void] function-id
	(formal-parm [,...])
[VALUE formal-parm [,...]]	
	formal-parm-decl [;...] ;
formal-parm-decl [;...] ;	
	" { " statement " } "
statement ;	
	2. static [type
2. [type] SUBROUTINE subroutine-id	void] function-id ()
statement ;	" { " statement " } "
statement	Local. define-directive :
may be any SPL statement, including	
compound (BEGIN-END).	1. #define function-id (
	formal-parm [,...])
	statement-process

8- 20

	:
	#undef function-id
	2. #define function-id statement-process
	:
	#undef function-id

A subroutine is like a procedure that has	No direct equivalent.
no option or local declaration sections.	

Declared at the global level, it is	A static function is the closest global
available only to the main body of the	equivalent. It is available to all
compilation unit. It may access global	functions in the compilation unit. It may
identifiers.	access global identifiers.

Declared at the local level, it is	The "best" local equivalent is a #define
available only to the procedure body where	macro directive, which will be expanded
it is declared. It may access global and	inline wherever it is called. See "DEFINE
local identifiers.	Declaration and Reference" for the #define
	syntax rules. Note that there is no
	control whatsoever over the data types of
	the macro's formal and actual parameters.
	The alternate solution is a static function
	at the global level. This can be awkward
	because the local procedure variables that
	were known to the subroutine are no longer
	automatically available. You could change
	the local variables to global, or pass them
	as parameters to the new function.

Table 8-27. SUBROUTINE Declaration Example

SPL Subroutine	HP C/XL Function	HP C/XL define Directive

INTEGER SUBROUTINE A(B,C);	static short int A(B,C);	#define A(B,C) ((B)+(C))
VALUE B,C;	short int B,C;	...
INTEGER B,C;	{	#undef A
A := B+C;	return B+C;	
	}	

| |
| This example shows the conversion of an SPL subroutine to an HP C/XL function and a |
| #define macro directive. |
| |
| In the #define directive version, the parentheses around B and C and the summation |
| are necessary to ensure correct evaluation of the parameters when the substitutions |
| for B and C are expressions. |

Careful examination of an SPL procedure may reveal that local variables
have been declared in the procedure for the sole purpose of providing
them to the subroutine. In that case, the variable declarations may
simply be moved to the new function.

8-: 21

It is permitted (but rarely used) to execute a GOTO statement from an SPL
subroutine to a label within the body of the enclosing procedure. HP
C/XL restricts the goto statement to labels within the same function
declaration.

8- 22

9- 1

Chapter 9 Input/Output

This chapter discusses conversion issues that correspond to sections in
Chapter 8 of the Systems Programming Language Reference Manual .

Introduction to Input/Output

SPL has no input/output (I/O) statements; instead, it uses MPE V
intrinsics to perform all I/O operations.

Similarly, HP C/XL has no I/O statements; it does have its own library
header file, <stdio.h>, that provides a comprehensive set of macros and
functions for I/O capabilities, including high level formatting. HP C/
XL also has a special library header file, <mpe.h>, that provides an
interface to the MPE XL I/O intrinsic library. This arrangement allows
HP C/XL programmers to choose either HP C/XL I/O functions and macros,
MPE XL I/O intrinsics, or a combination of both.

In general, the MPE XL I/O intrinsics are identical to or extensions of
the MPE V versions. The differences are described in the Introduction to
MPE XL for MPE V Programmers migration guide. Consult the MPE XL
Intrinsics Reference Manual | for the complete specification of all MPE
XL intrinsics.

There are strong arguments in favor of adopting the HP C/XL style of I/O
operations. Programmer convenience and program portability are high on
the list. Programs that use HP C/XL library functions can usually be
transferred to HP C/HP-UX with little or no modification. The source
code changes that are required anyway to provide parameters to the MPE XL
intrinsics can just as easily be revised to use HP C/XL library functions
instead.

It is recommended that SPL programs being translated into HP C/XL adopt
as many of the HP C/XL I/O facilities as possible. Where there are
necessary operations that cannot be performed by the HP C/XL standard
library header file, <stdio.h>, MPE XL intrinsics may be declared with
the #pragma intrinsic directive and called directly.

CAUTION You cannot use the HP C/XL I/O system and another I/O system
concurrently to write data to the same disk file (except for the
stdout and stderr file streams). Please consult the HP C/XL
Library Reference Manual for details.

9- 2

Example

Since all I/O operations by MPE V intrinsics use 16-bit data, it is
common to equivalence a BYTE array to a previously declared LOGICAL word
array. Then data is stored into or extracted from the byte array, while
the equivalent word array is passed to the MPE V intrinsics.

As an example of the convenience of the HP C/XL constructs, consider the
following SPL program fragment and the identical operation in HP C/XL:

SPL	HP C/XL Equivalent

LOGICAL ARRAY BUFW(0:40);	short int X;
<<equate byte to word array>>	printf("value of X = %d\n",X);
BYTE ARRAY BUF(*)=BUFW;	
INTEGER X;	
INTRINSIC PRINT, ASCII;	
<<move 18 bytes>>	
MOVE BUF:="value of X = ";	
<<convert to ASCII>>	
ASCII(X,10,BUF(13));	
<<output word array copy>>	
PRINT(BUFW,9,0);	

Record Format

The "normal" SPL file has fixed-length records, although files with
variable length records can be created and used. The "normal" HP C/XL
file, called a "stream", has variable-length records; files with
fixed-length records can be created and used.

File References

There are three distinct variables that specify a file, depending on
which HP C/XL function or MPE intrinsic opened it. These variables are
used to identify the file access to other functions or intrinsics. The
HP C/XL function open returns filedes , an int file descriptor; the HP
C/XL function fopen returns stream , a pointer to type FILE; and the MPE
intrinsic FOPEN returns filenum , a 16-bit integer file number. The MPE
XL intrinsic HPFOPEN also returns filenum , but as a 32-bit integer file
number, equal to the FOPEN value.

Fortunately, there is a relationship among them. A stream file pointer
can be obtained from a fildes file descriptor with the HP C/XL <stdio.h>
library function fdopen:

 #include <stdio.h>
stream = fdopen(fildes)

An MPE filenum can be obtained from fildes with the HP C/XL <mpe.h>
library function _mpe_fileno:

9- 3

 #include <mpe.h>
filenum = _mpe_fileno(filedes)

See the HP C/XL Library Reference Manual for more details.

Conflicting Function and Intrinsic Identifiers

Five of the functions in the HP C/XL standard library have the same names
as MPE intrinsics: fopen, fclose, fread, fwrite, and read. If any of
the MPE intrinsics of the same name are used, it is recommended that you
rename them with the #pragma intrinsic directive to avoid confusion.
For instance:

 #pragma intrinsic FREAD MPE_FREAD

Although case sensitivity would render FREAD distinct from fread, the
use of MPE_FREAD is much more descriptive. It's probably a good idea to
apply the same renaming scheme to all the MPE intrinsics your program
uses, just to make them easier to find.

Error Reporting

The MPE intrinsics vary in how errors are reported. Some return an error
value for a function value or parameter, but most have a side effect of
setting the condition code. The HP C/XL library function ccode returns
the most recent setting of the condition code.

The HP C/XL I/O functions report an error by returning an error value,
and sometimes by setting an external variable errno. The value of errno
will indicate the error which caused the most recent intrinsic or li-
brary function error. Its value is not changed or reset until the next
instance of an error, so errno should not be interrogated unless a
function that sets it reports an error.

Summary of Intrinsics, Macros, and Functions

Table 9-1 lists the MPE XL I/O intrinsics. Note that all but HPFOPEN are
equivalent to the MPE V versions. HPFOPEN is only available in MPE XL.
It has clearer ways of passing parameters than FOPEN, as well as having
more options. See the MPE XL Intrinsics Reference Manual for details.

Table 9-1. MPE XL I/O Intrinsics

Intrinsic Description
FCHECK(filenum , fserr , translog , block , nrec) Get details on I/O errors
FCLOSE(filenum , disp , seccode) Close file
FCONTROL(filenum , controlcode , param) Perform control operation on file or
terminal
FOPEN(formdesig , foptions , aoptions ,...) Open file; return filenum , 16-bit file
number
FREAD(filenum , buffer , length) Read logical record from sequential file;
return count
FREADDIR(filenum , buffer , length , lrecnum) Read logical record from direct access file
FSPACE(filenum , disp) Space forward or backward on file

9- 4

| FUPDATE(filenum , buffer , length) Update logical record in file |
| FWRITE(filenum , buffer , length , ctlcode) Write logical record to sequential file |
| FWRITEDIR(filenum , buffer , length , lrecnum) Write logical record to direct access file |
| HPFOPEN(filenum , status [, itemnum , item][...]) Open file; return filenum , 32-bit file |
| number |
| PRINT(message , length , ctlcode) Write string to $STDLIST |
| READ(message , expectedlength) Read string from $STDIN; return actual |
| length |
| READX(message , expectedlength) Read string from $STDINX; return actual |
length

Table 9-2 and Table 9-3 describe briefly the HP C/XL standard library I/O
macros and functions that you may wish to use in converting your SPL
programs. See the HP C/XL Library Reference Manual for details.

Table 9-2. HP C/XL I/O Macros

Macro Description
getc(stream) Read one character from file stream
getchar() Read one character from stdin
putc(c, stream) Write one character c to file stream
putchar(c) Write one character c to stdout

Table 9-3. HP C/XL I/O Functions

Function Description
access(filename , access) Test accessibility of file
clearerr(stream) Clear error and eof conditions on file
stream
close(fildes) Close file fildes
dup(fildes) Duplicate file descriptor fildes
fclose(stream) Close file stream ; flush buffer
fdopen(fildes) Get stream pointer from fildes file
descriptor
feof(stream) Test file stream for end-of-file

| ferror(stream) Test file stream for error |
| fflush(stream) Flush buffer to file stream |
| fgetc(stream) Read one character from file stream |
| fgets(string , n, stream) Read n -1 chars from file stream (or up to |
| '\n') |
| fopen(filename , type) Open file filename ; return stream (pointer |
| to FILE) |
| fprintf(stream , format [, item][...]) Convert from internal item ; write to file |
| stream |
fputc(c, stream) Write one character c to file stream
fputs(string , stream) Write string (up to '\0') to file stream
fread(ptr , size , nitems , stream) Read fixed-length binary records from file
stream
freopen(filename , type , stream) Change file attached to stream
fscanf(stream , format [, item][...]) Read from stream ; convert to internal item
fseek(stream , offset , ptrname) Set byte position in file stream
ftell(stream) Return byte position of file stream
fwrite(ptr , size , nitems , stream) Write fixed-length binary records to file
stream

| gets(string) Read string from stdin |
| getw(stream) Read int word from file stream |
| lseek(fildes , offset , ptrname) Set byte position in file fildes |
| open(filename , oflag , mode, mpeopts) Open file filename ; return fildes (int file|
| descriptor) |
| printf(format [, item][...]) Convert from internal item ; write to stdout|
| puts(string) Write string (up to '\0') to stdout |
putw(word , stream) Write int word to file stream

9- 5

| read(fildes , buf , nbyte) Read fixed-length binary records from file |
| fildes |
| remove(filename) Purge file filename |
| rename(oldname , newname) Rename file |
| rewind(stream) Reset byte position to beginning of file |
| stream |
| scanf(format [, item][...]) Read from stdin; convert to internal item |
| setbuf(stream , buffer) Define buffer for file stream |
setvbuf(stream , buffer , type , size) Define buffer for file stream
sprintf(string , format [, item][...]) Convert from internal item ; write to string
sscanf(string , format [, item][...]) Read from string ; convert to internal item
tmpfile() Open unnamed tempfile
tmpnam(string) Create temp filename in string
ungetc(c, stream) Push back character c to input file stream
unlink(filename) Purge file filename
write(fildes , buf , nbyte) Write fixed-length binary records to file
fildes

Opening a New Disk File

SPL uses the MPE V intrinsic FOPEN to create and open disk files. FOPEN
allows SPL to have complete control over the definition of a new file.
It returns a file number, filenum , which is used to identify the access
to this file for subsequent I/O operations by other intrinsics, such as
FREAD and FWRITE. If an error occurs, FOPEN returns zero and sets the
condition code to CCL.

In HP C/XL, a file may be created and opened with the library functions
open and fopen or with the MPE XL intrinsics FOPEN and HPFOPEN.

The most preferred and portable is HP C/XL fopen, which returns a stream
pointer that is used by all of the HP C/XL standard data formatting and
character transfer functions, such as fscanf and fprintf. If fopen
fails, it returns a null pointer.

If you need the HP C/XL binary read and write functions, or more file
creation control, the open function provides more system-specific
capabilities, which make it less portable. open returns fildes , a 32-
bit int file descriptor, which may be used to obtain both a stream
pointer and a filenum file number.

Reading a File in Sequential Order

SPL uses the FREAD intrinsic to read all or part of a record in a
sequential file with fixed- or variable-length records. A logical
record pointer points to the next record to be read. When any part of
a record is read, the pointer advances to the next record.

HP C/XL has several ways to read records. The fgets function is probably
the closest to the SPL action: a requested number of bytes or all the
characters up to the end of the record are read into a buffer. If the
end of record was reached, HP C/XL marks it by appending a '\n'
(linefeed) character to the record data in the buffer. In any case, HP
C/XL appends a '\0' (NUL) character to mark the end of the data in the
buffer.

9- 6

Alternatively, the HP C/XL fread function can be used to read
fixed-length binary data into a structure, such as an array or struct.
Since fread does not recognize file record boundaries, you need to be
sure the sizes you supply add up correctly.

The conventional means of performing I/O in HP C/XL is to view data files
as a "stream" of text (ASCII characters) in variable-length records.

The functions contained in the HP C/XL library provide a rich set of
formatted I/O operations, greatly simplifying the multiple steps which
are necessary in SPL. Consideration of fixed-length record operations is
required only to read files created in this manner by other programs, or
to create files for programs that expect to read fixed-length records.

Writing Records into a File in Sequential Order

SPL uses the FWRITE intrinsic to write all or part of a record in a
sequential file with fixed- or variable-length records. A logical
record pointer points to the next record to be written. When any part
of a record is written, the pointer advances to the next record.

The HP C/XL functions provide many choices for output. You may use
fputs, fwrite, or write to emulate the SPL record structure. Or you may
use the printf and fprintf to write formatted, variable-length text
records. With the latter two, you must identify the end of each record
to HP C/XL by writing a '\n' (linefeed) character. The '\n' is not
actually stored in the file.

Updating a File

SPL uses the MPE V intrinsic FUPDATE to replace the record last accessed
in the file by any intrinsic. This is commonly used to update part of a
record that has been located by some identifying data in the same record.
The records cannot be variable-length.

HP C/XL has no direct equivalent of the FUPDATE intrinsic. You will have
to emulate it by using the HP C/XL function ftell to give you the record
start byte before you read it. Then you can reposition the file with
the fseek function and rewrite the record with fputs, fwrite, or write.
You can even write records with fprintf and the rest as long as you
remember to write a '\n' character, signaling end-of-record to HP C/XL .

9- 7

Numeric Data Input/Output

SPL programs use four MPE V intrinsics to convert ASCII data to and from
binary format. They are:

 ASCII Converts 16-bit binary number to ASCII.

 DASCII Converts 32-bit binary number to ASCII.

 BINARY Converts ASCII byte string to 16-bit binary.

 DBINARY Converts ASCII byte string to 32-bit binary.

Converting floating-point numbers requires other intrinsics.

Calls to these intrinsics have to be combined with building byte strings
"by hand", equating them to word arrays, and then passing these to MPE
V I/O intrinsics. (See the example above in "Introduction to
Input/Output").

HP C/XL standard library functions perform these operations as an
extension to the normal I/O operations.

sscanf Converts ASCII string data into all the binary formats:
 signed and unsigned long and short int, char and
 unsigned char, float, and double.

sprintf Converts all the binary forms above into their text
 character representations, combining them with string
 variables and constants.

Both of these functions allow complete format conversions. They are
considerably more powerful than the MPE intrinsic equivalents.

Four HP C/XL library functions perform both the physical I/O operation
and the format conversions at the same time. They are:

scanf Reads text from the standard input file, stdin, and
converts the ASCII text into binary numeric variables,

character variables, and strings under the control of a
 format specification.

fscanf Does the same as scanf, but reads text from a specified
stream file.

printf Converts binary numeric values, character values, and
 string values into ASCII text under the control of a
 format specification, and writes the text to the
 standard output file, stdout.

fprintf Does the same as printf, but write the text to a
 specified stream file.

9- 8

The simplicity and flexibility of these routines render the direct use
of the MPE intrinsics a highly questionable option. The use of standard
HP C/XL library functions in general will greatly improve portability to
another operating system such as HP-UX.

File Equations

Standard attributes of a file used by an HP C/XL program may be modified
through the use of MPE XL :FILE commands, just as for SPL.

An additional feature available to HP C/XL is the redirection of the
standard (default) input and output files. This is accomplished by
supplying alternate MPE XL file names in the INFO= string of the MPE XL
:RUN command. For example:

 RUN HPCPROG; INFO="<myinput >myoutput"

The "<" parameter causes all standard input operations--the MPE XL
intrinsics such as READ and READX and the HP C/XL functions such as scanf
and getc--to access the file MYINPUT instead of $STDIN. Likewise, the
">" parameter causes any standard output to be directed to the file MY-
OUTPUT instead of $STDLIST. For more information, see the HP C/XL Ref-
erence Manual Supplement .

10- 1

Chapter 10 Compiler and MPE Commands

This chapter discusses conversion issues that correspond to sections in
Chapter 9 and 10 of the Systems Programming Language Reference Manual .

Compiler Format

The compiler listing format for HP C/XL is different from SPL's. For
complete information about the HP C/XL compiler, refer to the HP C
Reference Manual and the HP C/XL Reference Manual Supplement .

Use and Format of Compiler Commands

Table 10-1. Compiler Command Format

SPL	HP C/XL Equivalent

compiler-command :	compiler-directive :
$ command-name [parameter][,...]	# directive-name [parameter][...]
$$ command-name [parameter][,...]	

The "$" must be in column 1.	The "#" must be in column 1.
The "$$" form has no HP C/XL equivalent.	
Ignore the second "$".	

If a compiler command must be continued on	If a directive must be continued on
subsequent lines, each continued line ends	subsequent lines, each continued line ends
with "&" and the following line begins with	with "\".
"$" in column 1.	

The command may contain comments, enclosed	The directive cannot include comments.
in double angle brackets, "<< comment >>".	They become part of the text.

Some of the SPL compiler commands are paralleled in HP C/XL as compiler
options that are specified in the MPE XL :RUN command used to invoke the
HP C/XL compiler.

10-2

See the HP C/XL Reference Manual Supplement for further details.

$CONTROL Command

The SPL $CONTROL command has 22 options. Table 10-2 describes the
available equivalent HP C/XL directives or compiler options.

Table 10-2. $CONTROL Commands

SPL	HP C/XL Equivalent

$CONTROL LIST	#pragma LIST ON (default)
$CONTROL NOLIST	#pragma LIST OFF
$CONTROL SOURCE	(no equivalent; listing is on by default)
$CONTROL NOSOURCE	(no equivalent; must direct output to $NULL)

$CONTROL WARN	+w n compiler option (default) 1
$CONTROL NOWARN	-w compiler option 1
$CONTROL MAP	+m and +o compiler options 1
$CONTROL NOMAP	(default)

$CONTROL AUTOPAGE	#pragma AUTOPAGE ON	OFF
$CONTROL CODE	(no equivalent)	
$CONTROL NOCODE	(no equivalent)	
$CONTROL LINES= nnnn	#pragma LINES nnn	

$CONTROL ERRORS=nnn	(no equivalent)
$CONTROL USLINIT	(no equivalent)
$CONTROL DEFINE	+H n compiler option 1
$CONTROL SEGMENT=segname	(no equivalent)

$CONTROL ADR	+m and +o compiler options 1
$CONTROL INNERLIST	(no equivalent)
$CONTROL MAIN= name	(no equivalent)
$CONTROL UNCALLABLE	(no equiva lent)

$CONTROL PRIVILEGED	(no equivalent)
$CONTROL SUBPROGRAM	(implied by the absence of a main function)

10- 3

The HP C/XL Reference Manual Supplement describes the compiler options
and #pragma directives listed above, as well as others not available to
SPL.

1 Where an SPL $CONTROL compiler command is replaced by an HP C/XL
compiler option, please be aware that the compiler option applies to

 all of the source being compiled at the same time. These compiler
options are convenient because the source remains unmodified, but you

 do lose the line-by-line toggling of the SPL compiler command.

$IF Command (Conditional Compilation)

Table 10-3. $IF Command

SPL	HP C/XL Equivalent

if-command :	if-directive :
$IF [X n ={OFF	#if constant-expression
ON}]	
	...
	[#else
	...]
	#endif

SPL predefines ten switches named	The SPL switches may be emulated by
X0,...,X9, whose initial values are OFF.	defining them equal to zero in #define
The switches may be changed with the $SET	directives.
command (see below) and tested with the $IF	
command.	#define OFF 0
	#define ON 1
	#define X0 OFF
	...

When a $IF command is executed, and the	When an #if directive is executed, and the
switch test is true (or the test is	expression is true (nonzero), then all the
omitted), then all the following source	following source lines are compiled, down
lines are compiled, down to the next $IF	to the next #else or #endif directive. If
command. If the test is false, the same	the test is false (zero), the same source
source lines are skipped.	lines are skipped.
Note that there is no form of "else" except	The #else directive marks the start of a
a $IF with the opposite test. A $IF with	block of lines that are compiled only if
no parameter serves to end the conditional	the test is false. They are skipped if the
block.	test is true. The #else block is
	terminated by an #endif directive.

For example, X3 is used to control a choice	Assuming appropriate initialization, as
between two DEFINE declarations:	above, the corresponding example in HP C/XL
	could be coded as:
$IF X3 = ON	
DEFINE GLOBALVAL = 99#;	#if X3 == ON
$IF X3 = OFF	#define GLOBALVAL 99
DEFINE GLOBALVAL = 101#;	#else
$IF	#define GLOBALVAL 101

10-4

| | #endif |
| | |

In a case where two switches are used in	This is rendered in HP C/XL as:
series, you might see:	
	#if X3 == ON
$IF X3 = ON	#define GLOBALVAL 99
DEFINE GLOBALVAL = 99#;	#endif
$IF X5 = OFF	#if X5 == OFF
DEFINE GLOBALVAL = 101#;	#define GLOBALVAL 101
$IF	#endif

The conditional compilation facility in HP C/XL is considerably more
powerful than that available in SPL. Instead of ten fixed switches, you
can define arbitrary names as defined variables, and can test an
expression composed of these variables and constants.

The directives "#ifdef id " and "#ifndef id " are also available to test
whether or not an identifier, id , has been defined with a #define
directive. You can use #ifdef and #ifndef in place of #if. See the HP C
Reference Manual for more information.

$SET Command (Software Switches for Conditional Compilation)

Table 10-4. $SET Command

SPL	HP C/XL Equivalent

set-command :	Emulated with the #define directive:
$SET [X n ={OFF	#define X n {OFF
ON}][,...]	ON}
	[...]

The ten switches, X0,...,X9, used for	The #define directive emulates the $SET
conditional compilation are initially set	command.
to OFF.	
	The syntax above assumes that you have
They are turned ON and OFF with the $SET	defined the ten switches and the values ON
command.	and OFF at the beginning of the compilation
	unit, as follows:
	#define ON 1
	#define OFF 0
	#define X0 OFF
	...
	#define X9 OFF

10- 5

$TITLE Command (Page Title in Standard Listing)

Table 10-5. $TITLE Command

SPL	HP C/XL Equivalent

title-command :	title-pragma :
$TITLE [" title-string " [,...]]	#pragma TITLE " title-string "

The combined strings become the title on	The string becomes the title on subsequent
subsequent listing pages. $TITLE with no	listing pages. To turn off the title, use
strings turns off the title.	an empty string.

$PAGE Command (Page Title And Ejection)

Table 10-6. $PAGE Command

SPL	HP C/XL Equivalent

page-command :	page-pragma :
$PAGE [" title-string " [,...]]	[#pragma TITLE " title-string "]
	#pragma PAGE

A new listing page is started. The	A new listing page is started. You may
combined strings become the title on the	change the title on the new page by
new page. If the strings are omitted, the	preceding #pragma PAGE with a #pragma TITLE
previous title is retained.	directive.

$EDIT Command (Source Text Merging and Editing)

The SPL process of merging text files, checking sequence fields, and
editing text files has no equivalent in HP C/XL.

$SPLIT/$NOSPLIT Commands

The toggled version of the SPL procedure option OPTION SPLIT has no
equivalent in HP C/XL.

10-6

 $COPYRIGHT Command

Table 10-7. $COPYRIGHT Command

SPL	HP C/XL Equivalent

copyright-command :	copyright-pragma :
$COPYRIGHT " string "[,...]	#pragma COPYRIGHT " string "

The combined strings are written to the	A predefined copyright notice is written to
object module and the compiled program as a	the object module and the compiled program,
copyright notice.	using string as the company name.

SPL allows the data to be split over lines	HP C/XL lets you split the string
by having separate strings delimited by	internally with the "\" continuation
quotes and separated by commas. "&" is the	character. The string continues in column
line continuation character.	one of the next line.

NOTE The SPL command is quite different from the HP C/XL directive. In
SPL, the combined strings are the copyright notice. In HP C/XL,

 the string is assumed to be a company name that is inserted into
 predefined text.

Cross Reference Listing

There is no equivalent of the MPE V CROSSREF program available on MPE XL.

10- 7

$INCLUDE Command

Table 10-8. $INCLUDE Command

SPL	HP C/XL Equivalent

include-command :	include-directive :
$INCLUDE filename	1. #include " filename "
	2. #include < filename >

The text from filename is inserted in the	Same as SPL.
source stream at the point of the $INCLUDE	
command.	

A full file-id is filename . group . account .	Form 1 is the same as SPL, except that the
If ". account " or ". group . account " is	default group and account is that of the
omitted, it defaults to the logon group and	source file, and HP C/XL will continue the
account.	search in other groups and accounts.
	See the HP C/XL Reference Manual Supplement
	for a complete description of the file
	search algorithm.
	Form 2 implies that the file was supplied
	with the system. The default group is H
	and the default account is SYS.

MPE Commands

Many of the MPE V commands described in Chapter 10 of the Systems
Programming Language Reference Manual are identical to MPE XL commands.

However, the commands required to compile and run an HP C/XL program are
different in name and parameters from those used for SPL. Please consult
the HP C/XL Reference Manual Supplement for the commands and parameters
you will need.

10-8

11-1

Chapter 11 Step-by-Step SPL HP C/XL Conversion

This chapter describes a suggested method for converting SPL programs
into HP C/XL. It is by no means the only method, but it is one that works
well in a number of common circumstances. The person assigned to the
conversion should have a good working knowledge of SPL and the tools
(that is, editors) that are used to maintain SPL programs. That person
should also be acquainted with the C programming language. The SPL
program being converted should be currently correct, and there should be
a method of testing it for continued correct behavior.

It is preferable to convert an SPL program in a series of steps, actually
retaining the program in SPL source for as long as possible. The primary
steps are:

 1. Remove as many of the hardware-dependent SPL constructs as
 possible from the SPL version, recompile, and test.

2. Rewrite certain SPL constructs to be more like HP C/XL, recompile,
 and test.

 3. Convert the source code to HP C/XL (rewriting as little as
 possible), then compile, debug, and test.

 4. Examine the HP C/XL source for improvements that can take
 advantage of constructs and capabilities not available in SPL.

Step One: Remove Hardware Dependencies

Many SPL constructs are highly hardware-dependent, such as ASSEMBLE
statements and references to hardware registers. In most cases, these
constructs were used by SPL programmers for reasons of efficiency, not
for lack of higher level alternatives. Rewriting these portions and
testing the program again should be a first step. Normally, this is a
matter of determining exactly what the old statements are intended to
do, and implementing the same function in SPL statements that do not
dependon specific hardware instructions or registers.

The direct use of the stack, via PUSH, DEL, and TOS operators is done for
one of two reasons: either to avoid declaring temporary variables, or to
retrieve information left on the stack after an operation such as SCAN.
In the first case, simply declaring extra variables will allow the stack
references to be eliminated. In the case of operations such as SCAN, see
the relevant areas of this guide for SPL procedures that isolate these
operations and may later be replaced by equivalent HP C/XL functions.

11-2

Step Two: Rewrite SPL to Look Like HP C/XL

The case sensitivity of HP C/XL is one of the first differences between
these two languages that an SPL programmer is liable to notice. Because
SPL ignores case, some SPL programs have examples of the same reserved
word or variable name appearing in both upper- and lowercase at various
points in the source. In HP C/XL, these names will be interpreted as
different entities. HP C/XL keywords must be expressed in lowercase.
Many HP C/XL programmers tend to specify #define macro identifiers in
uppercase to distinguish them from function names, but there are no
universally accepted standards.

As a first step, convert the SPL source to all uppercase (except for
strings, of course). When you convert to HP C/XL in the next step,
reserved and keywords will shift to lowercase, and the identifiers of
variables, etc., will remain in uppercase, thereby avoiding any possible
conflict with HP C/XL reserved words and library function names.

There are a number of other changes which may be made to SPL programs,
causing them to conform more closely to HP C/XL forms, and rendering them
easier to translate.

For example, HP C/XL does not allow nested functions, so SPL subroutines
will be awkward to translate. Careful examination now of any subrou-
tines used in your SPL program will give you a head start on determining
how best to eliminate the subroutines.

Possibilities are: moving the subroutine code inline (meaning that the
code will be repeated wherever the subroutine is called, possibly by
means of a DEFINE), or converting the subroutine to an SPL procedure. In
the latter case, variables in the procedure that are accessed by the
subroutine will have to be supplied as parameters, or declared global to
both the new procedure and its caller. In many cases, these variables
were declared in the procedure simply for use by the subroutine, which
means they may be declared within the new procedure.

Also, be alert for the possibility that identical subroutines were
declared local to more than one procedure; they could all be replaced by
one global procedure.

Another change that may be easier to debug prior to converting to HP C/XL
is the elimination of any pass-by-reference procedure parameters. By
changing such parameters to pass-by-value pointers, and then changing
the actual parameters to addresses (generated with the "@" operator),
the process of passing and accessing parameters in the same manner as
HP C/XL may be tested in an SPL environment. Remember that unsubscripted
array, pointer, and procedure identifiers passed by reference do not
require any modification.

Because the natural data size of HP C/XL is 32 bits, you should convert
as many SPL INTEGER variables to SPL DOUBLE as possible. This will
result in a more efficient final HP C/XL program.

11-3

There are a few HP C/XL reserved words that are also reserved words in
SPL, and there always exists the possibility that an SPL variable name
has a unique meaning as an HP C/XL reserved word. All keywords in HP
C/XL must be in lowercase, but relying on case differences to
differentiate between reserved words and variable names is bad practice.

The following is a list of words which are reserved in both languages,
but do not always mean the same thing:

CASE This is a statement in SPL, but, as case, it is used to label
 switch alternatives in HP C/XL.

DO This statement is very similar, but SPL performs a DO-WHILE
 test, while HP C/XL performs a do-until test.

DOUBLE This is a 32-bit signed integer in SPL, but a 64-bit IEEE
floating point number in HP C/XL. Variables declared DOUBLE
in an SPL program must be converted to type [long] int when

 converting to HP C/XL.

ELSE This word is very similar in both languages, therefore simply
 make certain that else is in lowercase at the time of
 conversion. Also, make sure the statement before the else
 ends with either a semicolon, ";", or a right brace, "}".

FOR This is a similar statement that has different syntax. See
 "FOR Statement".

GOTO This is an identical operation, but SPL allows both GO and
 GOTO. Changing both to lowercase goto is valid SPL and
 prepares for the move to HP C/XL.

IF This statement is identical in both languages, but has
 slightly different syntax. Change the word to lowercase.

LONG In SPL, this is a 64-bit floating point number in the MPE V
format. In HP C/XL, long is a 32-bit integer. Be certain to

 convert it to double in HP C/XL. Also remember that the
64-bit floating-point internal formats are quite different on

 the two systems.

RETURN This causes a return from a procedure or subroutine in SPL,
and also causes a return from a function in HP C/XL. Remember
to remove the SPL parameter and add the HP C/XL return value.

 (See "RETURN Statement").

SWITCH In SPL, this declares a list of labels to be branched to by
 an indexed GOTO. In HP C/XL, switch is a statement type,
 analogous to the SPL CASE. (See "GO TO Statement").

WHILE This function is identical in both languages, having only a
 slight difference in syntax.

11-4

The following are HP C/XL reserved words. Examine the SPL source for any
use of these words as variable names.

auto default extern int sizeof union
break do float long static unsigned
case double for register struct void
char else goto return switch while
continue enum if short typedef

You should also avoid the following proposed ANSI C reserved words:

const signed volatile

SPL array declarations should be examined for cases that have a nonzero
lower bound. This is not allowed in HP C/XL, and should be recoded to
work properly with a lower bound of zero. Remember that indirect (and
many direct) arrays can be coded in HP C/XL with a pointer to cell zero.

BYTE arrays used for storing ASCII strings should be examined for how
they are used and, if possible, a NUL ('\0', numeric value zero) should
be placed in the last byte. This is done to facilitate later use of the
HP C/XL convention, which expects a NUL to terminate a string.

Be especially careful with cases where word pointers were converted to
byte pointers (and vice versa) by means of shift, multiply, or divide
operations. All pointers in HP C/XL will refer to byte addresses, so
these operations will rarely translate without careful recoding.

Bit operations in SPL are performed for two reasons. One is to unpack
data words read by the program from external files, and the other to
conserve data storage for variables used by the program. In the latter
case, consider declaring whole words for the individual fields and
eliminating the bit operations entirely.

The SPL switch declaration may be left alone at this stage. It will be
converted into an HP C/XL #define macro directive in step 3. See "GO TO
Statement" and "CASE Statement".

Certain operations, such as passing labels as parameters, are not
permitted in HP C/XL, so now could be the time to recode the necessary
operation in more translatable constructs. In general, operations that
use extra data segments and split stack operations, should be removed
and rewritten (if possible), or at least isolated into separate proce-
dures.

As a final consideration to HP C/XL, move all of the SPL program's outer
block executable statements into a new procedure named main, and make
the new outer block consist of a single statement, calling this proce-
dure. These changes will bring an SPL program as close to HP C/XL con-
ventions as possible, and should be thoroughly tested in this form
before making the plunge into HP C/XL itself.

11-5

Step Three: Convert the Source to HP C/XL

If the preceding two steps have been performed carefully, conversion of
the SPL source to something acceptable to the HP C/XL compiler may take
less time and effort than expected. The major structural changes will be
to remove the initial BEGIN, the outer block (call to procedure main),
and the final END. HP C/XL will generate code to initiate the running of
the program by calling function main. As the order of declaration of HP
C/XL functions is not as critical as in SPL, it is common practice to
declare function main as the first function, immediately after any glo-
bal data declarations, followed by the rest of the function declara-
tions. Thus, all FORWARD declarations should be removed, but the type
of any function used prior to its declaration should be specified in the
function where it is called.

There are certain obvious changes to be made at this point. They include
deleting the word PROCEDURE, changing BEGIN to "{", END to "}" (make sure
the preceding statement ends in ";"), and replacing any "'" (apostrophe)
characters within variable names with "_" (underscore).

Conversion of the data types should be undertaken with some caution;
refer to the SPL data types in this document for suggestions.

As you make the syntax changes in statements such as IF and DO, remember
to downshift the keywords. This will serve as a reminder of what has
been converted. It's also necessary so the HP C/XL compiler can
recognize them.

After converting $CONTROL lines to their equivalent HP C/XL constructs,
the first attempts to compile the program may be made.

With the exception of rewriting any code designed to use features such as
extra data segments and split stack operations, the most difficult and
time consuming work will be assuring that equated declarations and
pointer operations behave as they did in SPL. If the equating is
necessary, it may be emulated via the union declaration. Pointer
operations, especially pointer arithmetic and storing numeric values
into pointers, will require the most care in converting. SPL allowed
many extremely dangerous operations to be performed, and pointer adjust-
ments were done assuming very specific hardware-dependent rules. HP C/
XL, while allowing a great deal of freedom to manipulate pointers, has
much more consistent rules regarding the effects of operations on point-
ers. The differences, however, must be accommodated. The resulting HP
C/XL code should be clearer and easier to maintain than the original SPL.

Step Four: Improve the Translated Source

After following the first three steps in this chapter, you will be
tempted to "leave well enough alone". Resist this temptation. Any
program written initially in SPL, and translated more or less literally
into HP C/XL according to these guidelines, is unlikely to be one which a
proficient HP C/XL programmer would create directly. The SPL "heritage"

11-6

will be apparent in the use of union declarations, old SPL equivalencing
operations, awkward I/O functions, and so on.

A frequent reason for equating variable names to arrays in SPL is to
overcome the lack of any form of record or structure variables. Wherever
possible, the use of union to emulate SPL equivalencing should be
examined to determine if the HP C/XL struct declaration is more natural
and appropriate.

Because HP C/XL performs implicit type conversions during expression
evaluation, many type cast operations (which required type conversion
functions in SPL) may have been inserted in the converted program where
they are no longer needed.

In SPL, strings are simply ASCII characters in arrays of type BYTE.
Various conventions were devised by SPL programmers to determine and
store the length of these strings, such as keeping a count in a separate
variable, or possibly within the first byte of the array. These same
operations may be converted to HP C/XL, but the accepted convention in HP
C/XL is to delimit a string by appending a NUL character to the string.
A NUL character (numeric value 0) is represented in HP C/XL by "'\0'".
Once you adopt this convention, a large library of string manipulation
routines becomes available, both simplifying and optimizing string
operations.

The wide range of formatted I/O routines available in HP C/XL may be
utilized, frequently allowing many SPL operations to be replaced with a
simple function call. At first, the HP C/XL I/O functions may look
simple, and therefore limited. However, the generality of these
functions means that they may be combined in ways that are just as
powerful as system intrinsics with seemingly more complex options.
Remember that reliance on any specific operating system intrinsics
restricts the program to that operating system. While this may be
unavoidable in some cases, the use of the HP C/XL high level I/O
functions will increase program portability, even across operating
systems.

Storage allocation (and deallocation) in SPL is quite straightforward,
but restrictive. In HP C/XL, a compound statement may contain local
variable declarations that are allocated on entry to the statement and
released when it ends. There may be instances in a program translated
from SPL where this is a more natural structure for the program. It can
simplify the source code by defining the scope of specific local
variables better. Also in HP C/XL, there are several functions which
allow programmatic allocation and deallocation of storage at runtime.
No similar features are easily available to the SPL programmer, leading
to the occasional clumsy use of dynamic arrays within procedures de-
clared only to allocate space dynamically, or worse, to manipulate hard-
ware registers to force access to memory regions not otherwise
available. Use of HP C/XL functions such as malloc, realloc, and free
makes it possible to dynamically allocate, reallocate, and release stor-
age at will. HP C/XL programs need not retain the SPL "flavor" that re-

11-7

sults from a literal translation. The features and operations that
performed very efficiently under MPE V now may be needlessly complex and
quite possibly less efficient. By using the high level constructs of
HP C/XL and its extensive library functions, you can develop programs
that are maintainable, portable, and will result in extremely efficient

runtime code with the optimizing features of the HP C/XL compiler.

11-8

A- 1

Appendix A SPL Procedures to Replace Special Features

The SPL procedures in this appendix perform many of the same operations
as the HP C/XL macros and functions in Appendix B. Using these procedures
in an SPL program will help to isolate special hardware-dependent
operations and greatly simplify the transition to HP C/XL.

SPL BCONCAT Procedure: Bit Concatenation

 << BCONCAT SPL BIT CONCATENATION >>
 << >>
 << This emulates the SPL bit concatenation operation, for example: >>
 << X := A CAT B (4:8:4); >>
 << This procedure performs the same operation without use of >>
 << the CAT operator. >>
 << >>
 << The parameters used by BCONCAT are: >>
 << a -- 1st 16 bit word to be merged into. >>
 << b -- 2nd 16 bit word with field to be merged. >>
 << sa -- Starting bit in word "a". >>
 << sb -- Starting bit in word "b". >>
 << n -- Number of bits to merge. >>
 << >>
 << The 16 bit value returned by the function is the result of >>
 << the concatenate operation. >>

 LOGICAL PROCEDURE BCONCAT(a,b,as,bs,n);
 VALUE a,b,as,bs,n;
 LOGICAL a,b;
 INTEGER as,bs,n;
 BEGIN
 LOGICAL M;
 n := 16-n;
 M := (%(16)FFFF & LSR(n)) & LSL(n-as);
 BCONCAT := (a LAND NOT(M)) LOR
 (IF as<bs THEN
 b & LSL(bs-as) ELSE
 b & LSR(as-bs) LAND M);
 END;

SPL BDEPOSIT Procedure: Bit Deposit

 << BDEPOSIT SPL BIT DEPOSIT >>
 << >>
 << This emulates the SPL bit deposit operation, for example: >>
 << I.(5:6) := J + K; >>
 << as an SPL procedure: >>
 << BDEPOSIT(@i,5,6,j+k); >>
 << >>
 << The parameters used by BDEPOSIT are: >>
 << dw -- The address of the destination word. >>
 << sb -- The starting bit of the deposit field. >>
 << nb -- The number of bits to deposit. >>
 << exp -- The expression to deposit into the field specified. >>
 << >>

A-2

 PROCEDURE BDEPOSIT(dw,sb,nb,exp);
 VALUE dw, sb, nb, exp;
 LOGICAL dw, sb, nb, exp;
 BEGIN
 LOGICAL M;
 POINTER P;
 nb := 16-nb;
 sb := nb-sb;
 M := (%(16)FFFF & LSR(nb)) & LSL(sb);
 @p := dw;
 p := (p LAND NOT m) LOR (exp & LSL(sb) LAND m);
 END;

SPL BEXTRACT Procedure: Bit Extraction

 << BEXTRACT SPL BIT EXTRACTION >>
 << >>
 << This procedure emulates the SPL bit extraction, for example: >>
 << x := y.(10:4); >>
 << as an SPL procedure: >>
 << x := BEXTRACT(y,10,4); >>
 << >>
 << The parameters to BEXTRACT are: >>
 << wd -- Word (unsigned short) to extract bits from. >>
 << sb -- Starting bit of field (0 through 15, left to right).>>
 << nb -- Number of bits in field. >>
 << >>
 << The return value will be the extracted field, right justified >>
 << in a 16 bit (unsigned short) word. >>

 LOGICAL PROCEDURE BEXTRACT(wd,sb,n);
 VALUE wd, sb, nb;
 LOGICAL wd;
 INTEGER sb, nb;
 BEGIN
 BEXTRACT := (wd & LSL(sb)) & LSR(16-nb);
 END;

SPL BYTECMP Procedure: Byte Comparison

<< BYTECMP SPL COMPARE BYTE STRINGS >>
 << >>
 << This emulates the byte string compare expression in SPL, >>
 << for example: >>
 << IF A < B,(N),0; >>
 << NN := TOS; {count} >>
 << @AA := TOS; {left address after compare} >>
 << @BB := TOS; {right address after compare} >>
 << This may be converted to C with: >>
 << if (BYTECMP(a,LSS,b,n,0,&nn,&aa,&bb))....>>
 << >>
 << The parameters to BYTECMP are: >>
 << left -- The left address to be compared. >>
 << cmp -- The comparison to be made. Here the following >>
 << syntax exists. >>
 << LSS means < >>
 << LEQ means <= >>
 << EQU means == >>
 << NEQ means <> >>
 << GEQ means >= >>
 << GTR means > >>
 << right -- The right address to be compared. >>
 << count -- The maximum number of bytes to compare. >>
 << sdec -- The SPL stack decrement. In this context, the >>
 << value of this parameter will determine if the >>
 << function accesses the last parameter, as >>
 << follows: >>

A- 3

 << sdec = 3 -- Ignore the last three >>
 << parameters (in SPL, this is >>
 << the default case, deleting >>
 << three stack words). >>
 << sdec = 2 -- Expect only one parameter after>>
 << this, cnt. >>
 << sdec = 1 -- Expect two parameters after >>
 << this, cnt and laddr. >>
 << sdec = 0 -- Expect three parameters after >>
 << this, cnt, laddr, and raddr. >>
 << cnt -- The value of "count" at the conclusion of the >>
 << comparison. If the strings compare for count >>
 << bytes, cnt will equal zero. >>
 << laddr -- The address of the char within the left string >>
 << which failed to match. >>
 << raddr -- The address of the char within the right string>>
 << which failed to match. >>

 DEFINE LSS=0#, LEQ=1#, EQU=2#, NEQ=3#, GEQ=4#, GTR=5#;

 INTEGER PROCEDURE BYTECMP(left,cmp,right,count,sdec,cnt,laddr,raddr);
 VALUE left, cmp, right, count, sdec, cnt, laddr, raddr;
 LOGICAL left, right, laddr, raddr;
 INTEGER cmp, count, sdec, cnt;
 BEGIN
 DEFINE ADJ =
 DO BEGIN
 IF count > 0
 THEN BEGIN count:=count-1; @lftp:=@lftp+1; @rhtp:=@rhtp+1; END
 ELSE BEGIN count:=count+1; @lftp:=@lftp-1; @rhtp:=@rhtp-1; END;
 END#;
 BYTE POINTER lftp, rhtp, laddrp, raddrp;
 INTEGER POINTER cntp;
 @lftp := left;
 @rhtp := rht;
 @cntp := cnt;
 @laddrp := laddr;
 @raddrp := raddr;
 CASE cmp OF
 BEGIN
 <<LSS: compare < >>
 BEGIN WHILE (count <> 0) AND (lftp < rhtp) ADJ END;
 <<LEQ: compare <= >>
 BEGIN WHILE (count <> 0) AND (lftp <= rhtp) ADJ END;
 <<EQU: compare == >>
 BEGIN WHILE (count <> 0) AND (lftp == rhtp) ADJ END;
 <<NEQ: compare <> >>
 BEGIN WHILE (count <> 0) AND (lftp <> rhtp) ADJ END;
 <<GEQ: compare >= >>
 BEGIN WHILE (count <> 0) AND (lftp >= rhtp) ADJ END;
 <<GTR: compare > >>
 BEGIN WHILE (count <> 0) AND (lftp > rhtp) ADJ END;
 END;
 CASE sdec OF
 BEGIN
 << 0 >> GOTO sdec 0;
 << 1 >> GOTO sdec 1;
 << 2 >> GOTO sdec 2;
 << 3 >> GOTO sdec 3;
 END;
 sdec0: raddrp := rhtp;
 sdec1: laddrp := lftp;
 sdec2: cntp := count;
 sdec3: ; << nil >>
 BYTECMP := IF count = 0 THEN 1 ELSE 0;
 END;

A-4

B-1

Appendix B HP C/XL Funtions to Emulate SPL Operations

The HP C/XL macro directives and function definitions in this appendix
emulate SPL operations that are performed by special features of the SPL
language, usually designed to access specific instructions available
under the MPE V operating system. If an SPL program has had these
operations replaced by the SPL procedures in Appendix A, simple
replacement of those procedure declarations by these HP C/XL macros and
functions are all that will be necessary to perform the same operation in
HP C/XL. Note that variable names are compatible with respect to case and
special characters.

The HP C/XL macro directives and function definitions in this appendix
emulate SPL operations that are performed by special features of the SPL
language, usually designed to access specific instructions available
under the MPE V operating system. If an SPL program has had these
operations replaced by the SPL procedures in Appendix A, simple
replacement of those procedure declarations by these HP C/XL macros and
functions are all that will be necessary to perform the same operation in
HP C/XL. Note that variable names are compatible with respect to case and
special characters.

HP C/XL BCONCAT Function: Bit Concatenation

/***
 BCONCAT SPL BIT CONCATENATION

 This emulates the SPL bit concatenation operation, for example:
 X := A CAT B (4:8:4);
 Using this function, this may be converted to HP C with:
 x = BCONCAT(a,b,4,8,4);
 The parameters used by BCONCAT are:
 a -- 1st 16 bit word to be merged into.
 b -- 2nd 16 bit word with field to be merged.
 sa-- Starting bit in word "a".
 sb-- Starting bit in word "b".
 n -- Number of bits to merge.

 The 16 bit value returned by the function is the result of
 the concatenate operation.
 ***/

 unsigned short int BCONCAT(a,b,sa,sb,n)
 unsigned short int a, b, sa, sb, n;
 {
 unsigned int m;
 n = 16-n;
 m = (0xFFF>>n)<<(n-sa);
 return((unsigned short int)((a & ~m) |
 ((sa<sb ? b<<(sb-sa) : b>>(sa-sb)) & m)));
 }

B-2

HP C/XL BDEPOSIT Function: Bit Deposit

/**
 BDEPOSIT SPL BIT DEPOSIT

 This emulates the SPL bit deposit operation, for example,
 I.(5:6) := J + K;
 Using this function, this may be converted to HP C with:
 BDEPOSIT(&i,5,6,j+k);

 The parameters used by BDEPOSIT are:
 dw -- The address of the destination word.
 sb -- The starting bit of the deposit field.
 nb -- The number of bits to deposit.
 exp -- The expression to deposit into the field specified.
 ***/

 void BDEPOSIT(dw,sb,nb,exp)
 unsigned short *dw, sb, nb, exp;
 {
 unsigned short m;
 nb = 16-nb;
 sb = nb-sb;
 m = (0xFFFF>>nb)<<sb;
 *dw = (*dw & ~m) | (exp<<sb & m);
 }

HP C/XL BEXTRACT Macro and Function: Bit Extraction

/***
 BEXTRACT SPL Bit Extraction

 This macro and function perform the SPL bit extraction:
 x := y.(10:4);
 which may be replaced in HP C by:

 x = BEXTRACT(y,10,4);

 The parameters to BEXTRACT are:
 wd -- The word (unsigned short int) from which to extract bits.
 sb -- Starting bit of field (0 through 15, left to right).
 nb -- Number of bits in field.
 The return value will be the extracted field, right
 justified in a 16 bit (unsigned short int) word.

 **/

 #define BEXTRACT(w,s,n) (((unsigned short int)((w)<<(s)))>>(16-(n)))

 /***/

 unsigned short int BEXTRACT(sw,sb,nb)
 unsigned short int sw, sb, nb;
 {
 return((unsigned short int)((sw<<sb))>>(16-nb));
 }

B-3

HP C/XL BYTECMP Function: Byte Comparison

/***
 BYTECMP SPL COMPARE BYTE STRINGS

 This emulates the byte string compare expression in SPL,
 for example:
 IF A < B,(N),0;
 NN := TOS; <<count>>
 @AA := TOS; <<left address after compare>>
 @BB := TOS; <<right address after compare>>
 This may be converted to C with:
 if (BYTECMP(a,LSS,b,n,0,&nn,&aa,&bb))...

 The parameters to BYTECMP are:
 left -- The left address to be compared.
 cmp -- The comparison to be made, where:
 LSS means <
 LEQ means <=
 EQU means ==
 NEQ means !=
 GEQ means >=
 GTR means >
 right -- The right address to be compared.
 count -- The maximum number of bytes to compare.
 sdec -- The SPL stack decrement. In this context,
 the value of this parameter will determine if
 the function accesses the last parameter
 as follows:
 sdec = 3 -- Ignore last three parameters
 (in SPL, this is the default
 case, deleting 3 stack words).
 sdec = 2 -- Expect only one parameter
 after this: caddr.
 sdec = 1 -- Expect two parameters after
 this: caddr and laddr.
 sdec = 0 -- Expect three parameters after
 this: caddr, laddr, and
 raddr.
 caddr -- The value of count at the conclusion of the
 comparison. If the strings compare for
 count bytes, caddr will equal zero.
 laddr -- The address of the char within the left
 string which failed to match.
 raddr -- The address of the char within the right
 string which failed to match.

 ***/

 enum CMP {LSS, LEQ, EQU, NEQ, GEQ, GTR };
 short int BYTECMP(left,cmp,right,count,sdec,caddr,laddr,raddr)
 char *left, *right, **laddr, **raddr;
 enum CMP cmp;
 int count, sdec, *caddr;
 {
 #define ADJ {if (count>0) {--count;++left;++right;} \
 else {++count;--eft;--right;}}
 switch (cmp) {
 case LSS: /* compare < */
 while ((count != 0) && (*left < *right)) ADJ;
 break;
 case LEQ: /* compare <= */
 while ((count != 0) && (*left <= *right)) ADJ;
 break;
 case EQU: /* compare == */
 while ((count != 0) && (*left == *right)) ADJ;
 break;

B-4

 case NEQ: /* compare != */
 while ((count != 0) && (*left != *right)) ADJ;
 break;
 case GEQ: /* compare >= */
 while ((count != 0) && (*left >= *right)) ADJ;
 break;
 case GTR: /* compare > */
 while ((count != 0) && (*left > *right)) ADJ;
 break;
 }
 switch (sdec) {
 case 0: *raddr = right;
 case 1: *laddr = left;
 case 2: *caddr = count;
 case 3: ; /* nil */
 }
 return (count == 0);
 #undef ADJ
 }

HP C/XL MOVEB Function: Move Bytes

/***
 MOVEB SPL MOVE BYTES

 This emulates the MOVE statement in SPL for byte moves with
 no information removed from the stack, for example:
 MOVE B1 := B2, (CNT), 0
 LEN := tos;
 @S1 := tos;
 @D1 := tos;
 This may be converted to C with:
 LEN := MOVEB(B1,B2,CNT,0,&S1,&D1);

 The parameters to MOVEB are:
 to -- The address to be moved to.
 from -- The address to be moved from.
 count -- Number of bytes to be moved. A positive value
 means left to right move, negative means
 right to left.
 sdec -- The SPL stack decrement. In this context, the
 value of this parameter will determine if
 the function accesses the last two
 parameters, as follows:
 sdec = 3 -- Ignore the last two parameters
 (in SPL, this is the default
 case, deleting 3 stack words).
 sdec = 2 -- Expect only one parameter
 after this, dest_addr.
 sdec = 1 -- Expect two parameters after
 this, dest_addr and source_addr.
 sdec = 0 -- Same as 1. This is never a
 meaningful operation in SPL,
 as the TOS, or count value,
 is always zero after the MOVE
 instruction.
 source_addr -- The address of the next char of "from" beyond
 the final character moved.
 dest_addr -- The address of the next char of "to" beyond the
 final character moved.

 The return value of the function is the number of bytes moved

B-5

 ***/

 short int MOVEB(to,from,count,sdec,source_addr,dest_addr)
 char *to, *from, **source_addr, **dest_addr;
 int count, sdec;
 {
 int c;
 c = 0;
 if (count>0) /* left-to-right move */
 do *to++ = *from++; while (++c < count);
 else if (count<0) /* right-to-left move */
 {
 count = -count;
 do *to-- = = *from--; while (++c < count);
 }
 switch (sdec) {
 case 0: ; /* fall through to case 1 */
 case 1: *source_addr = from;
 case 2: *dest_addr = to;
 case 3: ; /* nil */
 }
 return(c);
 }

HP C/XL MOVEBW Function: Move Bytes While

 /**
 MOVEBW SPL MOVE BYTES WHILE

 This emulates the MOVE while statement in SPL
 MOVE B1 := B2, WHILE A, 0;
 @S1 := tos;
 @D1 := tos;
 which may be converted to C with:
 LEN := MOVEBW(B1,B2,A,0,&S1,&D1);

 The parameters to moveb are:
 to -- The address to be moved into.
 from -- The address to be moved from.
 cond -- The move while condition, where:
 A means alphabetic
 AN means alphanumeric
 AS means alphabetic, upshift
 N means numeric
 ANS means alphanumeric, upshift
 sdec -- The SPL stack decrement. In this context, the
 value of this parameter will determine if
 the function accesses the last two
 parameters, as follows:
 sdec = 3 -- Ignore the last two parameters
 (in SPL, this is the default
 case, deleting 3 stack words).
 sdec = 2 -- Expect only one parameter
 after this, dest_addr.
 sdec = 1 -- Expect two parameters after
 this, dest_addr and source_addr.
 sdec = 0 -- Same as 1. This is not a
 meaningful operation in SPL,
 as the TOS, or count value,
 is always zero after the MOVE
 instruction.
 source_addr -- The address of the next char of from beyond
 the final character moved.
 dest_addr -- The address of the char of from beyond the
 final character moved.

 The return value of the function is the number of bytes moved.

B-6

 ***/

 enum COND {A, AN, AS, N, ANS};
 short int MOVEBW(to,from,cond,sdec,source_addr,dest_addr)
 enum COND cond;
 char *to, *from, **source_addr, **dest_addr;
 int sdec;
 {
 char *temp;
 temp = to;
 switch (cond) {
 case A: while (isalpha(*from)) *to++ = *from++;
 break;
 case AN: while (isalnum(*from)) *to++ = *from++;
 break;
 case AS: while (isalpha(*from)) *to++ = toupper(*from++);
 break;
 case N: while (isdigit(*from)) *to++ = *from++;
 break;
 case ANS: while (isalnum(*from)) *to++ = toupper(*from++);
 break;
 }
 switch (sdec) {
 case 0: ; /* fall through to case 1 */
 case 1: *source_addr = from;
 case 2: *dest_addr = to;
 }
 return(to-temp);
 }

HP C/XL MOVESB Function: Move String Bytes

/**
 MOVESB SPL MOVE STRING BYTES

 This emulates the MOVE statement in SPL for string moves,
 for example:
 MOVE A1 := "constant string",0;
 LEN := tos;
 S1 := tos;
 D1 := tos;
 which may be converted to C with:
 LEN := MOVESB(A1,"constant string",0,&S1,&D1);

 The parameters to MOVESB are:
 to -- The address to be moved into,
 right to left.
 sdec -- The SPL stack decrement. This parameter will
 determine if the function accesses the last
 two parameters, as follows:
 sdec = 3 -- Ignore the last two parameters
 (in SPL, this is the default
 case, deleting 3 stack words).
 sdec = 2 -- Expect only one parameter
 after this, dest_addr.
 sdec = 1 -- Expect two parameters after
 this, dest_addr and source_addr.
 sdec = 0 -- Same as 1. This is never meaningful
 in SPL, because the TOS (count)
 is always zero after a MOVE.
 source_addr -- The address of the next char of str beyond.
 the final character moved.
 dest_addr -- The address of the next char of to beyond the
 final character moved.

 The return value is the number of bytes moved.

B-7

 **/

 short int MOVESB(to,str,sdec,source_addr,dest_addr)
 char *to, *str, **source_addr, **dest_addr;
 int sdec;
 {
 char *temp;
 temp = to;
 while (*str != '\0') *to++ = *str++;
 switch (sdec) {
 case 0: ; /* fall through to case 1 */
 case 1: *source_addr = str;
 case 2: *dest_addr = to;
 case 3: ; /* nil */
 }
 return(to-temp);
 }

HP C/XL MOVEW Function: Move Words

 /**
 MOVEW SPL MOVE WORDS

 This emulates the MOVE statement in SPL for word moves with
 no information removed from the stack, for example:
 MOVE W1 := W2, (CNT), 0
 LEN := tos;
 @S1 := tos;
 @D1 := tos;
 This may be converted to C with:
 LEN := MOVEW(W1,W2,CNT,0,&S1,&D1);

 The parameters to MOVEW are:
 to -- The address to be moved into.
 from -- The address to be moved from.
 count -- Number of bytes to be moved; a positive value
 means left to right move, negative means
 right to left.
 sdec -- The SPL stack decrement. In this context, the
 value of this parameter will determine if the
 function accesses the last two parameters,
 as follows:
 sdec = 3 -- Ignore the last two parameters
 (in SPL, this is the default
 case, deleting 3 stack words).
 sdec = 2 -- Expect only one parameter after
 this, dest_addr.
 sdec = 1 -- Expect two parameters after
 this, dest_addr and source_addr.
 sdec = 0 -- Same as 1. This is not a meaningful
 operation in SPL because the TOS,
 or count value, is always zero
 after the MOVE instruction.
 source_addr -- The address of the next char of "from" beyond
 the final character moved.
 dest_addr -- The address of the next char of "to" beyond the
 final character moved.

 The return value of the function is the number of bytes moved.

 **/

 short int MOVEW(to,from,count,sdec,source_addr,dest_addr)
 short int *to, *from, **source_addr, **dest_addr;
 int count, sdec;
 {
 int c;

B-8

 c = 0;
 if (count>0) /* left to right move */
 do *to++ = *from++; while (++c < count);
 else if (count<0) /* right to left move */
 {
 count = -count;
 do *to-- = *from--; while (++c < count);
 }
 switch (sdec) {
 case 0: ; /* fall through to case 1 */
 case 1: *source_addr = from;
 case 2: *dest_addr = to;
 case 3: ; /* nil */
 }
 return(c);
 }

HP C/XL SCANU Function: Scan Until

 /***
 SCANU SPL SCAN UNTIL

 This emulates the SCAN until statement in SPL, for example:
 NUM := (SCAN B1 UNTIL TEST, 0);
 T := TOS; <<test word -- unchanged>>
 @S1 := TOS;
 This may be converted to C with:
 LEN := SCANU(B1,TEST,0,&S1);

 The parameters to SCANU are:
 ba -- The address to be scanned.
 test -- The testword, two bytes. The first is the
 terminate character, the second is the
 test character, either of which will
 cause the scanning to continue.
 sdec -- The SPL stack decrement. In this context, the
 value of this parameter will determine if the
 function accesses the last parameter,
 as follows:
 sdec = 2 -- Ignore the last parameter. This
 parameter need not be present.
 sdec = 1 -- Expect one parameter after this:
 scan_addr.
 sdec = 0 -- Same as 1. In SPL, an sdec of 1
 or 2 deletes the test word from
 the stack, which is always unchanged
 after the SCAN operation.
 scan_addr -- The address of the char which stopped the SCAN
 operation. This equals either the terminal or
 the test character.

 The return value of this function is the number of bytes moved.

 **/

 short int SCANU(ba,test,sdec,scan_addr)
 char *ba, **scan_addr;
 unsigned short test;
 int sdec;
 {
 char termc, testc, *temp;
 temp = ba;
 termc = (char)test >> 8;
 testc = (char)test & OxFF;
 while ((*ba != testc) && (*ba != testc)) ba++;
 switch (sdec) {
 case 0: ; /* fall through to case 1 */

B-9

 case 1: *scan_addr = ba;
 case 2: ; /* nil */
 }
 return(ba-temp);
 }

HP C/XL SCANW Function: Scan While

 /**
 SCANW SPL SCAN WHILE

 This emulates the SCAN while statement in SPL, for example:
 NUM := (SCAN B1 WHILE TEST, 0);
 T := TOS; <<test word -- unchanged>>
 @S1 := TOS;
 which may be converted to C with:
 LEN := SCANW(B1,TEST,0,&S1);

 The parameters to SCANW are:
 ba -- The address to be scanned.
 test -- The testword. This is two bytes; the first is
 the terminate character, the second is the test
 character. Either of these will terminate the
 scan operation.
 sdec -- The SPL stack decrement. In this context, the
 value of this parameter will determine if the
 function accesses the last parameter, as follows:
 sdec = 2 -- Ignore the last parameter (which
 need not be present).
 sdec = 1 -- Expect one parameter after this,
 scan_addr.
 sdec = 0 -- Same as 1. In SPL, an sdec of 1 or
 2 deletes the test word from the
 stack, which is always unchanged
 after the SCAN operation.
 scan_addr -- The address of the char which stopped the SCAN
 operation (i.e. failed to equal either the terminal
 or the test character).
 The return value of the function is the number of bytes moved.

 **/

 short int SCANW(ba,test,sdec,scan_addr)
 char *ba, **scan_addr;
 unsigned short test;
 int sdec;
 {
 char temc, testc, *temp;
 temp = ba;
 termc = (char)test >> 8;
 testc = (char)test & OxFF;
 while ((*ba == testc) || (*ba == testc)) ba++;
 switch (sdec) {
 case 0: ; /* fall through to case 1 */
 case 1: *scan_addr = ba;
 case 2: ; /* nil */
 }
 return(ba-temp);
 }

B-10

HP C/XL Bit Shift Macros and Functions

 /**/
 #define LSL(x,c) ((unsigned short) ((unsigned short) x << c))
 /**/
 #define LSR(x,c) ((unsigned short) ((unsigned short) x >> c))
 /**/
 #define ASL(x,c) ((short) (((short)x & 0x8000) | \
 ((short)x << c) & 0x7FFF))
 /**/
 #define ASR(x,c) ((short) ((short)x >> c))
 /**/
 unsigned short CSL(x,c)
 unsigned short x;
 int c;
 {
 for (;;--c) {
 if (c == 0) return(x);
 x = ((x & 0x8000) >> 15) | x << 1;
 }
 }
 /**/
 unsigned short CSR(x,c)
 unsigned short x;
 int c;
 {
 for (;;--c) {
 if (c == 0) return(x);
 x = ((x & 0x0001) << 15) | x >> 1;
 }
 }
 /**/

 /**/
 #define DLSL(x,c) ((unsigned int) ((unsigned int) x << c))
 /**/
 #define DLSR(x,c) ((unsigned int) ((unsigned int) x >> c))
 /**/
 #define DASL(x,c) ((int) (((int)x & 0x80000000) | \
 ((int)x << c) & 0x7FFFFFFF))
 /**/
 #define DASR(x,c) ((int) ((int)x >> c))
 /**/
 unsigned int DCSL(x,c)
 unsigned int x;
 int c;
 {
 for (;;--c) {
 if (c == 0) return(x);
 x = ((x & 0x80000000) >> 31) | x << 1;
 }
 }
 /**/
 unsigned int DCSR(x,c)
 unsigned int x;
 int c;
 {
 for (;;--c) {
 if (c == 0) return(x);
 x = ((x & 0x00000001) << 31) | x >> 1;
 }
 }
 /**/

	Top of Document
	Preface
	Chapter 1 SPL Migration
	Chapter 2 Program Structure
	Chapter 3 Basic Elements
	Chapter 4 Global Data Declarations
	Chapter 5 Expressions, Assignments, and Scan Statements
	Chapter 6 Program Control Statements
	Chapter 7 Machine Level Constructs
	Chapter 8 Procedures, Intrinsics and Subroutines
	Chapter 9 Input/Output
	Chapter 10 Compiler and MPE Commands
	Chapter 11 Step-by-Step SPL HP C/XL Conversion
	Appendix A SPL Procedures to Replace Special Features
	Appendix B HP C/XL Funtions to Emulate SPL Operations

