Contents

1. Introduction

- What Is System Startup? ... 18
- How System Startup is Carried Out ... 18
- What Is System Configuration? .. 19
- How System Configuration Is Performed 19
- What Is System Shutdown? .. 20
- How System Shutdown is Carried Out 20

2. Initiating System Activity

- Resetting the System ... 22
 - Soft Reset ... 22
 - Hard Reset ... 22
- Resetting the System Using the Console 22
- Determining and Selecting Input and Output (I/O) Paths 30
- Testing the System ... 31
- The Booting Process ... 32
 - Autobooting the System .. 32
 - Interrupting an Autobooting System 33
 - Interactively Booting the System with Autoboot Disabled 39
- Bypassing the Disabled Autoboot Setting 42
- System Startup Procedure .. 45

3. System Startup Functions

- Initial System Loader (ISL) ... 50
- Using Initial System Loader (ISL) Commands 50
- Using the Help Facility for ISL Commands 51
- Listing Available ISL Utilities ... 52
- Activating and Deactivating Autoboot and Autosearch Functions .. 54
- Modifying Boot Paths in Stable Storage 55
- Displaying Current Boot Path, Autoboot, and Autosearch Settings .. 55
- Setting Fastsize ... 56
- Listing Autoboot File Contents ... 56
- Reading Nonvolatile Memory (NVM) .. 57
- Reading Stable Storage .. 57
- Reading and Setting the Hardware Clock 57
- ISL Boot Utilities ... 60
- Starting the System ... 61
- Using START and its Options .. 61
- Executing Commands During System Startup 62
- Starting a HP e3000 (Series 900) ... 64
- Updating the Operating System ... 77
- The ISL Utility ... 77
Contents

Scheduling a System Update. .. 77
Using the UPDATE Utility and Options. 78
Updating the Operating System: a Preview 79
Updating the System Configuration: a Preview 80
Updating to Recover from System Failure: a Preview 80
Backing up the System and Retaining the Current Configuration . 80
Installing the Operating System 82
Using the INSTALL Utility to Recover a Lost System 82
Scheduling an INSTALL ... 83
Using the INSTALL Utility and Options 83
Installing the Operating System: a Preview 84
Back up the System and Retain the Current Configuration 85
Dumping System Memory and Secondary Storage 86
What is the Function of the DUMP Utility? 86
Using the DUMP Utility and Options 86
Entering the DUMP Utility and Starting the System 87
ISL Summary ... 92

4. Using the System Generator (SYSGEN)
 Entering the SYSGEN Global Module 98
 Using the Help Facility in SYSGEN's Global Module 100
 Using First-Level (Global Module) Commands 102
 SYSGEN Command Syntax ... 103
 Halting SYSGEN Command Actions 103
 Specifying the Base Group ... 103
 Confirming Potentially Serious Actions 104
 Showing the State of Configurators 107
 Activating the Configurators 108
 Clearing Configuration Changes 109
 Saving Configuration Changes 109
 Generating a System Load Tape 110
 Redirecting SYSGEN Input and Output 114
 Exiting SYSGEN ... 116

5. Modifying Input/Output (I/O) Configurations
 I/O Paths .. 118
 I/O Paths Used to Boot a System 118
 Selecting I/O Paths ... 118
 Using the SYSGEN I/O Configurator 118
 Getting Help with I/O Configurator Commands 119
 Using I/O Configurator Commands 120
 Viewing the Current Configuration 121
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printing the Configuration Information</td>
<td>122</td>
</tr>
<tr>
<td>Sample Configuration Data</td>
<td>122</td>
</tr>
<tr>
<td>Adding Objects in SYSGEN</td>
<td>123</td>
</tr>
<tr>
<td>Changing Configurations in SYSGEN</td>
<td>124</td>
</tr>
<tr>
<td>Deleting Objects in SYSGEN</td>
<td>126</td>
</tr>
<tr>
<td>Changing the Configuration Online</td>
<td>126</td>
</tr>
<tr>
<td>Using the IOCONFIG Utility</td>
<td>128</td>
</tr>
<tr>
<td>Adding a Device with IOCONFIG</td>
<td>129</td>
</tr>
<tr>
<td>Listing One or More Devices with IOCONFIG</td>
<td>130</td>
</tr>
<tr>
<td>Deleting a Device with IOCONFIG</td>
<td>131</td>
</tr>
<tr>
<td>Adding a Device Class with IOCONFIG</td>
<td>131</td>
</tr>
<tr>
<td>Modifying a Device Class with IOCONFIG</td>
<td>132</td>
</tr>
<tr>
<td>Listing One or More Device Classes with IOCONFIG</td>
<td>132</td>
</tr>
<tr>
<td>Deleting a Device Class with IOCONFIG</td>
<td>132</td>
</tr>
<tr>
<td>Configuring a Device Adapter with IOCONFIG</td>
<td>133</td>
</tr>
<tr>
<td>Listing an I/O Path with IOCONFIG</td>
<td>133</td>
</tr>
<tr>
<td>Deleting an I/O Path with IOCONFIG</td>
<td>134</td>
</tr>
<tr>
<td>Updating the Device Class Association Table with IOCONFIG</td>
<td>134</td>
</tr>
<tr>
<td>6. Modifying Logging Configurations</td>
<td></td>
</tr>
<tr>
<td>Entering the LOG Configurator</td>
<td>136</td>
</tr>
<tr>
<td>Using the LOG Configurator Help Facility</td>
<td>136</td>
</tr>
<tr>
<td>Showing Current LOG Values</td>
<td>137</td>
</tr>
<tr>
<td>Logging System Events</td>
<td>139</td>
</tr>
<tr>
<td>Logging User Events</td>
<td>139</td>
</tr>
<tr>
<td>Clearing Log Configuration Changes</td>
<td>140</td>
</tr>
<tr>
<td>Holding and Saving Configuration Changes</td>
<td>140</td>
</tr>
<tr>
<td>Entering an MPE Command from the LOG Configurator</td>
<td>141</td>
</tr>
<tr>
<td>Exiting the LOG Configurator</td>
<td>141</td>
</tr>
<tr>
<td>Printing a Log File</td>
<td>141</td>
</tr>
<tr>
<td>Printing a Subset of a Log File</td>
<td>142</td>
</tr>
<tr>
<td>7. Modifying Miscellaneous Configuration Elements</td>
<td></td>
</tr>
<tr>
<td>Entering the MISC Configurator</td>
<td>144</td>
</tr>
<tr>
<td>Using the MISC Configurator Help Facility</td>
<td>145</td>
</tr>
<tr>
<td>Showing Values of Current Configurable Items</td>
<td>148</td>
</tr>
<tr>
<td>Deleting Global Resource Identification Numbers (RIN)</td>
<td>151</td>
</tr>
<tr>
<td>Configuring Job-Related Limits</td>
<td>152</td>
</tr>
<tr>
<td>Displaying Allocated Global RINs</td>
<td>153</td>
</tr>
<tr>
<td>Setting Resource Allocations</td>
<td>154</td>
</tr>
<tr>
<td>Setting Session-Related Limits</td>
<td>156</td>
</tr>
<tr>
<td>Setting Sizes of Native Mode and Compatibility Mode Stacks</td>
<td>157</td>
</tr>
</tbody>
</table>
Contents

Setting Strings and String Parameters .. 158
Clearing MISC Configuration Changes .. 159
Holding and Saving Configuration Changes ... 160
Entering an MPE Command from the MISC Configurator 161
Exiting the MISC Configurator ... 162

8. Modifying System File Configurations

Entering the SYSFILE Configurator ... 164
Using the SYSFILE Configurator Help Facility .. 164
Using SYSFILE Configurator Commands ... 166
Displaying Current File Information ... 167
 Adding Autoboot Files ... 169
 Adding Boot Files .. 169
 Adding a Segment to the Compatibility Mode Segmented Library (CMSL) 170
 Adding File Names to Dump to Tape ... 170
Deleting Objects from the SYSGEN Tape ... 171
 Deleting Autoboot Images ... 171
 Deleting Boot Images .. 171
 Deleting Compatibility Mode Segments from a SYSGEN Tape 172
Removing System Programs from a SYSGEN Tape 172
Replacing Objects on the SYSGEN Tape ... 172
 Replacing Autoboot Images ... 172
 Replacing Boot Images ... 173
 Configuring a Message Catalog .. 174
 Replacing a CMSL Segment ... 174
 Replacing or Defining a Network Configuration File 175
 Replacing an IPL Image .. 175
 Replacing the Native Mode Library ... 175
 Replacing a System Program ... 176
Using a Segmented Library File as CMSL .. 176
Listing CMSL Contents ... 177
Clearing SYSFILE Configurator Changes .. 177
Holding and Saving Configuration Changes .. 177
Entering an MPE Command from the SYSFILE Configurator 178
Exiting the SYSFILE Configurator ... 178

9. Halting System Activity

Including Shutdown Information in the Welcome Message 180
Telling Users about the Shutdown ... 180
Limiting System Use ... 180
Shutting the Spool Queues and Handling the Remaining Reports 180
Warning Users Two Minutes Before Shutting Down the System 181
Contents

Upgrade the GSP Firmware (XU) ... 244
Virtual Front Panel Display (VFP) ... 244

Glossary
Figure C-1.. Stable Storage Contents
Figure C-2.. NVM Contents
Table 2-1.. AP Reset Commands22
Table 3-1.. ISL Commands50
Table 3-2.. Execution of SYSSTART File Modules64
Table 3-3.. Utility Options93
Table 3-4.. Summary of System Startup Function95
Table 4-1.. Using First-Level Commands102
Table 4-2.. Actions Performed by Command File Example114
Table 4-3.. Actions Performed by Command File LISTIT115
Table 5-1.. I/O Configurator Command Matrix120
Table 5-2.. I/O Configurator List Commands121
Table 5-3.. I/O Configurator Add Commands123
Table 5-4.. I/O Configurator Modify Commands125
Table 5-5.. I/O Configurator Delete Commands126
Table 5-6.. IOCONFIG Commands129
Table 7-1.. Minimum and Maximum Values for JOB Command Parameters152
Table 7-2.. Minimum and Maximum Values for RESOURCE Parameters154
Table 7-3.. Minimum and Maximum Values for SESSION Parameters156
Table 7-4.. Min. and Max. Values for STACK Parameters157
Table 7-5.. Default Values for SYSTEM Parameters158
Table 8-1.. SYSFILE Configurator Command Matrix166
Table A-1.. Status Line Display185
Table A-2.. Access Port Commands185
Table C-1.. Codes for ISL Utility Names206
Table D-1.. Default Configurations for the HP e3000207
Preface

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest in a series of forward-compatible operating systems for the HP 3000 line of computers.

In HP documentation and in talking with HP e3000 users, you will encounter references to MPE XL, the direct predecessor of MPE/iX. MPE/iX is a superset of MPE XL. All programs written for MPE XL will run without change under MPE/iX. You can continue to use MPE XL system documentation, although it may not refer to features added to the operating system to support POSIX (for example, hierarchical directories).

Finally, you may encounter references to MPE V, which is the operating system for HP e3000s, not based on PA-RISC architecture. MPE V software can be run on the PA-RISC HP e3000 (Series 900) in what is known as compatibility mode.

In This Book

This manual is your guide to starting, shutting down, and configuring the HP e3000 (Series 900).

• Chapter 1, “Introduction,” provides an overview of system startup, configuration, and shutdown procedures.

• Chapter 2, “Initiating System Activity,” explains the initial portions of the system bootup procedures including soft resets, hard resets, system self testing, boot paths and working with AUTOBOOT.

• Chapter 3, “System Startup Functions,” explains the Initial System Loader, starting, updating and installing the operating system, and how to dump system memory.

• Chapter 4, “Using the System Generator (SYSGEN),” introduces you to SYSGEN and its configurator modules and explains how to generate a System Load Tape.

• Chapter 5, “Modifying Input/Output (I/O) Configurations,” explains how to use SYSGEN's I/O Configurator and how to use the IOCONFIG utility to make changes to the input and output devices used on the system.

• Chapter 6, “Modifying Logging Configurations,” explains how to use the LOG configurator to change the attributes of user and system logging processes.

• Chapter 7, “Modifying Miscellaneous Configuration Elements,” explains how to configure various system elements using SYSGEN's MISC configurator.

• Chapter 8, “Modifying System File Configurations,” describes how to use the SYSFILE configurator to change system libraries, programs, and the system message catalog.

• Chapter 9, “Halting System Activity,” describes how to shut down the system.

• Appendix A, “Using the Access Port (AP),” explains how to enable a remote console and configure a remote modem port for system support.
• Appendix B, “Startup, Dump, and Shutdown Listings,” lists the console messages you will see during a successful startup, load, dump and shutdown of the system.

• Appendix C, “Reading Stable Storage and Nonvolatile Memory,” explains how to use the READSS and READNVM commands to provide information to your Customer Engineer in case of system problems.

• Appendix D, “Default Configurations Used by INSTALL and UPDATE,” explains default configuration groups.

• Appendix E, “Verifying Attached Devices,” explains two ISL utilities, IOMAP and ODE.

• Appendix F, “Adding Peripherals to a System,” explains how to define device paths for peripherals connected to a system via several different kinds of device adapters.

• Appendix G, “UPS and UPS Monitor/iX Software,” explains the new method of power failure protection available on HP e3000 systems.

The Glossary defines the important terms introduced in system management. The Index is an alphabetical listing of subjects, cross-referenced with their location in the manual. This manual contains information subject to change without notice.
1 Introduction

This chapter defines system startup, system configuration, and system shutdown. It also briefly describes the procedures for starting, configuring, and shutting down a HP e3000 (Series 900) computer system. The details for these procedures are discussed throughout the following chapters.
What Is System Startup?

System startup refers to the procedure for starting the computer software, namely the operating system, and other programs. System startup does not refer to installing the system for the first time. (A separate installation guide for your first loading of the new fundamental operating software (FOS) comes with each FOS tape. See below.) Also, system startup does not refer to turning on the power to the computer, disk drives, tape drives, printers, or the system console. Normally, computer hardware remains powered on continuously.

How System Startup is Carried Out

System startup involves several steps:

- resetting the system
- placing system files on the system disk, if the files do not already reside there
- starting the system using an autoboot or interactive sequence

Starting procedures are administered and controlled through initial system loader (ISL) utilities.

The initial system loader is software that provides a command-driven user interface for accessing boot utilities or issuing commands to display or change system startup functions. You can access ISL by resetting the system. (Refer to Chapter 2, “Initiating System Activity,” for information on resetting the system.)

The START utility enables the system operator or system manager to start (boot or initialize) the system after system files have been placed on disk by the ISL INSTALL or UPDATE utilities, or after system memory has been stored to tape or disk by the ISL DUMP utility.

NOTE
If you are installing the operating system for the first time, or if you are updating your current system, please follow the instructions in the HP e3000 MPE/iX System Software Maintenance Manual. This manual is packaged with the FOS and system load tape (SLT) that you receive from Hewlett-Packard.

There are two booting sequences available for the HP e3000 (Series 900): autoboot and interactive. The autoboot sequence takes its utility commands from an autoexecute file, also referred to as an autoboot file, and requires no operator intervention to start the operating system. The interactive sequence prompts the system manager or system operator for the utility commands and options to start the operating system.

Autoboot and interactive sequences are discussed in detail in Chapter 2, “Initiating System Activity,” and Chapter 3, “System Startup Functions.”
What Is System Configuration?

System configuration is the means by which you define, in terms meaningful to the operating system, any or all of the peripheral devices attached to the computer for the input (entering) or output (storing or displaying) of data. Such devices include terminals, printers, disk drives, and tape drives.

System configuration also includes the definition or modification of system parameters other than the input/output (I/O) device configuration. These parameters include system tables, the message catalog, user logging processes, system logging events, and other system resources.

How System Configuration Is Performed

System configuration and generation procedures are administered and controlled through the system generator (SYSGEN) utility.

SYSGEN is a program that enables a user with system manager (SM) capability to view, create, modify, and save system I/O configuration data. (A user with system supervisor (OP) capability may only view I/O configuration data.) In addition, the system manager can add, remove, and replace system boot files and system libraries by creating a system load tape (SLT).

The system stores configuration data in groups and allows for multiple groups to reside on disk. SYSGEN builds on an existing configuration group to change that configuration or to create a new configuration. The new configuration data can be stored on disk or tape. This SLT tape can then be used to install an entirely new copy of the operating system or to update an existing copy.

NOTE

SYSGEN does not support configuring terminals into the system. For information on terminal configuration, refer to the HP e3000/iX Network Planning and Configuration Guide.
What Is System Shutdown?

System shutdown refers to stopping the computer's software, operating system, and other programs. (Stopping system activity makes the computer inaccessible to users.) A system shutdown does not imply turning off power to the computer hardware.

How System Shutdown is Carried Out

Shutdown procedures are performed by the system console command:

```
CTRLA =SHUTDOWN
```

The =SHUTDOWN command logs off all remaining sessions, including the session logged on at the console. All system processes are stopped in an orderly manner. Completing all system activity and processing before shutdown, maintains the integrity of all system tables and directories.

Shutting down the system consists of several steps:

- telling users well in advance of a planned shutdown
- warning users a few minutes before the shutdown
- preventing anyone from starting a new job or session, or printing new reports
- clearing the backlog of reports before the shutdown
- answering any console requests
- shutting open communication lines
- suspending or aborting any jobs, and aborting sessions
- entering the =SHUTDOWN command

Chapter 9, “Halting System Activity,” outlines detailed procedures for shutting down the system.
Separate firmware routines of processor-dependent code (PDC) and input/output-dependent code (IODC) perform the system self-test and initialization after resetting HP Precision Architecture hardware.

The initial program load (IPL), the first software retrieved from the boot device, implements the operating-system-independent portion of the bootstrap process. The initial system loader (ISL), a boot-device-based IPL utility, provides the user interface for displaying or modifying system startup functions.
Reseting the System
There are two general types of resets for the HP 3000 (Series 900): a soft reset and a hard reset.

Soft Reset
A soft reset, the type of reset used most often, preserves the current processor state. This type of reset performs a nondisruptive memory test and terminates all I/O operations before executing recovery software for starting the boot device and console selection process. A soft reset can also occur during a software reboot at the completion of a bootable ISL utility, such as INSTALL, UPDATE, or DUMP.

More information on issuing resets from the console is provided later in this chapter.

Hard Reset
A hard reset is disruptive. It initiates the processor self-test that resets memory and terminates all I/O operations. A hard reset is necessary after a hardware failure or after an error from which the system cannot recover.

A hard reset is initiated when the CPU is powered on. If the system is powered on already, then entering the reset command, RS, at the system console initiates the hard reset process.

More information on issuing resets from the console is provided later in this chapter.

Reseting the System Using the Console
With the release of the A and N-class systems, MPE supports two different types of access into the system service ports. For NIO based systems, the console interfaces with the 900 Series HP 3000 through the access port (AP) located in the channel I/O (CIO) section of the system card cage. For A and N-class systems, the Guardian Service Processor (GSP) provides access through the core I/O card.

In addition to providing other features and commands, both the GSP and the AP allow the system manager or system operator (OP capability) to issue hard or soft resets from the console keyboard instead of using the front panel reset switch. (The system is secured from anyone accidentally entering an GSP/AP command. It responds to GSP/AP commands only when the console is placed in control mode by entering CTRL B.)

The access port supports two, two-character commands for resetting the system, as described in Table 2-1.

Table 2-1. AP Reset Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>Reset SPU (hard reset). This command initiates a processor self-test that resets memory and terminates all I/O operations. Do not use this type of reset in preparation for a dump.</td>
</tr>
</tbody>
</table>
To reset the system using the access port (AP), or Guardian Service Processor (GSP), follow the directions listed below:

1. Place the console in control mode by entering **CTRL B** at the system prompt.
 - The console responds by displaying the control mode prompt (**CM>**) and activating the system status line at the bottom of the screen:

 CM>
 .
 .
 .
 Code: F1FF REMOTE: disabled inactive multiple ACCESS
 FAULT: 00
 - For A and N-class systems, the console responds by displaying the GSP mode prompt (**GSP>**) along with a status message.
 - Leaving Console Mode - you may lose write access.
 When Console Mode returns, type **^Ecf** to get console write access.
 - **GSP Host Name:** <GSP host name>

 GSP>

2. Issue the reset command. Enter: **CM> SP**

 NOTE
 If you have a 99X system, you must transfer to the service processor before you reset the system.

 CM> **RS** ** Hard reset **

 or

 CM> **TC** ** Soft reset **

If you have a 9X8LX or 9X8RX system, a PDC menu is displayed when you issue **CTRL B**. From that menu, you can proceed to boot your system by typing **BO**. No specific reset is required.

Table 2-1. AP Reset Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>Transfer of control (soft reset). This command initiates a reset that preserves the current processor state, terminates all I/O operations, and performs a nondisruptive memory test.</td>
</tr>
</tbody>
</table>
Example 2-1 demonstrates a soft reset of the system with autoboot disabled using the console and AP commands for a Series 949 system. The reset screen may contain different boot path and additional information, depending on the system you are using.

Example 2-1. Resetting an N-Class System Using GSP Commands: Autoboot Disabled

`:<ctl-B>`

GSP Host Name: csyprel18(csasys18)

GSP> tc

TC

Execution of this command irrecoverably halts all system processing and I/O activity and restarts the computer system.

Type Y to confirm your intention to restart the system: (Y/[N])y

********** VIRTUAL FRONT PANEL **********

System Boot detected

<table>
<thead>
<tr>
<th>LEDs:</th>
<th>RUN</th>
<th>ATTENTION</th>
<th>FAULT</th>
<th>REMOTE</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLASH</td>
<td>FLASH</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>

platform	config	626F
processor	test	1142
processor	test	1100
processor	test	1100
processor	test	1100
memory	test	71A8
memory	test	71A8
memory	config	7280
I/O	test	8107
I/O	test	8107
processor	test	1142
platform	test	612A
I/O	config	8238
Initiating System Activity

Resetting the System

************* EARLY BOOT VFP ************
End of early boot detected

Firmware Version 21.32

Duplex Console IO Dependent Code (IODC) revision 1

--
(c) Copyright 1995-2000, Hewlett-Packard Company, All rights reserved
--

<table>
<thead>
<tr>
<th>Processor Number</th>
<th>Speed</th>
<th>State</th>
<th>CoProcessor State</th>
<th>Cache Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>540 MHz</td>
<td>Active</td>
<td>Functional</td>
<td>512 KB</td>
</tr>
<tr>
<td>3</td>
<td>Unknown</td>
<td>Stopped:Deconfigured</td>
<td>Unknown</td>
<td>512 KB</td>
</tr>
</tbody>
</table>

Central Bus Speed (in MHz) : 133
Available Memory : 2097152 KB
Good Memory Required : Not initialized. Defaults to 32 MB.

Primary boot path: 0/0/2/0.6
Alternate boot path: 0/12/0/0.2
Console path: 0/0/4/0.0
Keyboard path: 0/0/4/0.0

---- Main Menu--

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot [PRI</td>
<td>ALT]<path>]</td>
</tr>
<tr>
<td>Path [PRI</td>
<td>ALT</td>
</tr>
<tr>
<td>SEArch [DISPLAY</td>
<td>IPL] [path]</td>
</tr>
</tbody>
</table>

Chapter 2
Initiating System Activity

Resetting the System

<table>
<thead>
<tr>
<th>Configuration menu</th>
<th>Displays or sets boot values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information menu</td>
<td>Displays hardware information</td>
</tr>
<tr>
<td>Service menu</td>
<td>Displays service commands</td>
</tr>
<tr>
<td>Debug menu</td>
<td>Displays debug commands</td>
</tr>
<tr>
<td>MFG menu</td>
<td>Displays manufacturing commands</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display</th>
<th>Redisplay the current menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Help [menu]<command>]</td>
<td>Display help for menu or command</td>
</tr>
<tr>
<td>Reset</td>
<td>Restart the system</td>
</tr>
</tbody>
</table>

Main Menu: Enter command or menu >

Answering NO to the boot path prompt initiates other prompts that query for the proper path to the boot device. If you answer YES to the primary path prompt, the system displays additional messages as it boots the processor and operating system.

Example 2-2 demonstrates a soft reset of the system with autoboot enabled, using console and AP/GSP commands for a N class system. The reset screen may contain a different boot path display and additional information, depending on the system you are using.

NOTE

If you have a 99X system, you must transfer to the service processor before you reset the system: CM> SP

If you have a 9X8LX or 9X8RX system, you need to type BO to boot the system from the primary path.

Example 2-2. Resetting an N class System Using AP/GSP Commands

Autoboot Enabled

:<ctl-B>

GSP Host Name: csyprel18(csyasas18)

GSP> tc

TC

Execution of this command irrecoverably halts all system processing and I/O activity and restarts the computer system.

Type Y to confirm your intention to restart the system: (Y/[N]) y

y
Initiating System Activity

Resetting the System

-> SPU hardware was successfully reset.

GSP Host Name: csyprel18(csyasas18)
GSP>

********** VIRTUAL FRONT PANEL **********

System Boot detected

**

LEDs: RUN ATTENTION FAULT REMOTE POWER
FLASH FLASH OFF ON ON

platform config 626F
processor test 1142
processor test 1100
processor test 1100
...

processor test 1110
processor INIT 1701
processor test 1110
processor test 1142
processor test 1142
memory config 7280
memory test 71A8
memory test 71A8
...
memory test 71A8
memory config 7280
I/O test 8107
I/O test 8107
processor test 1142
platform test 612A
I/O config 8238

**

************ EARLY BOOT VFP ************

End of early boot detected
Firmware Version 21.32

Duplex Console IO Dependent Code (IODC) revision 1

<table>
<thead>
<tr>
<th>Processor Number</th>
<th>Speed</th>
<th>State</th>
<th>CoProcessor State</th>
<th>Cache Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>540 MHz</td>
<td>Active</td>
<td>Functional</td>
<td>512 KB</td>
</tr>
<tr>
<td>3</td>
<td>Unknown</td>
<td>Stopped:Deconfigured</td>
<td>Unknown</td>
<td>512 KB</td>
</tr>
</tbody>
</table>

Central Bus Speed (in MHz): 133
Available Memory: 2097152 KB
Good Memory Required: Not initialized. Defaults to 32 MB.

Primary boot path: 0/0/2/0.6
Alternate boot path: 0/0/1/0.6
Console path: 0/0/4/0.0
Keyboard path: 0/0/4/0.0

Processor is booting from first available device.

To discontinue, press any key within 10 seconds.

10 seconds expired.
Proceeding...

Trying Primary Boot Path

Booting...
Boot IO Dependent Code (IODC) revision 1
SOFT Booted.
MMSAVE Version 2.5
DUMPAREA found, save main memory to disc
ISL loaded

ISL Revision A.00.43 Apr 12, 2000

[insert autoboot past isl)

If you do not press a key to interrupt the sequence, the system displays messages as it automatically boots the processor and operating system.

The autoboot flag setting determines whether the system searches for an autoexecute file with which to boot the operating system automatically.

NOTE

If an autobooting system cannot locate a valid autoexecute file, it boots to ISL; therefore, you see the statement *Cannot find an autoexecute file. AUTOBOOT ABORTED.* This does not present any problems; just continue with the **START** command in ISL.

NOTE

Disabling and enabling autoboot is explained in Chapter 3, “System Startup Functions.”
Determining and Selecting Input and Output (I/O) Paths

The system identifies adapter interfaces to a system bus and the associated devices by an I/O path. The I/O path is the address of the interface hardware and the physical path to reach a device.

When the system is reset or the power is turned on, hardware routines read and initialize the I/O paths needed to boot the system. These boot paths consist of the primary boot path, for booting from disk-resident software; the alternate boot path, for booting from a system load tape; and the console boot path, for locating console operator intervention.

Boot paths for the primary boot device, the alternate boot device, and the console are shown as numbers separated by periods or forward slashes.

There are several ways to determine the I/O path for devices that are attached to the system:

- Generate a list of paths for devices that have already been configured by using the **LPATH** command of the SYSGEN utility IO Configurator. SYSGEN does not tell you if the configured device is active or available. During the system boot (using the ISL **START** command), information on which paths have been configured and which devices are available or not available is listed as the “System State at Boot Time.” (For more information on the system state, refer to Chapter 3, “System Startup Functions,” and Appendix B, “Startup, Dump, and Shutdown Listings.” For more information on SYSGEN, refer to Chapter 4, “Using the System Generator (SYSGEN).”)

- Use the ISL utility, **IOMAP**, to list the devices on the system. (For more information on **IOMAP**, refer to Appendix E, “Verifying Attached Devices.”) For 9X8LX and 9X8RX systems, use the ODE utility to list devices on the system.

- For the N-class and A-class systems, the BCH (Basic Console Handler) **SEA** command in the Main Menu lists the disk and tape devices physically present on the system.
Testing the System

A HP e3000 (Series 900) system undergoes a self-test upon reset:

After resetting and testing, the system either autoboots or initiates an interactive boot sequence. Whether or not the system autoboots depends on how the autoboot flag is set and the presence of an autoboot file. For information on using the AUTOBOOT command, refer to Chapter 3, “System Startup Functions.”
The Booting Process

The process of booting the processor-dependent code (PDC) and the input/output-dependent code (IODC) takes place immediately after the system self-test. The initialization process is hardware-driven and begins automatically.

After the system is reset, the PDC and IODC boot sequence messages indicate or prompt for the I/O paths required for successful completion. For more information on proper I/O paths for startup, refer to the previous section.

Autobooting the System

Autobooting allows you to boot the system from the primary boot path without the need to make any keyboard entries.

Boot messages vary slightly depending on whether autoboot is enabled. The following examples show some typical boot sequences and illustrate use of the material covered up to this point (resetting the system, system self-test, and using I/O paths).

Autobooting a system is usually accomplished by enabling autoboot with the ISL AUTOBOOT command, resetting the system, and following the system’s prompts. For information on the AUTOBOOT command, refer to Chapter 3, “System Startup Functions.”

Even when autoboot is disabled (or you have interrupted an enabled autoboot sequence as described in the next section), the system still allows you the option of autobooting by issuing an Interact with IPL (Y or N)? > message. (Bypassing a disabled autoboot flag setting to autoboot a system is discussed later in this chapter.)

Example 2-3 demonstrates autobooting an N-Class system. The example is a partial listing of an uninterrupted autoboot (autoboot enabled) sequence. The screen may contain a different boot path display and additional information, depending on the system you are using.

Example 2-3. Autobooting an N-Class System

CM> TC

Processor Dependent Code (PDC) revision 3.2

Console path = 4.2.0.0.0.0.0
Primary boot path = 4.1.0.0.0.0.0
Alternate boot path = 4.5.0.0.0.0.0

Autoboot from primary boot path enabled.
To override, press any key within 10 seconds.

10 seconds expired -- proceeding with autoboot.

Booting from primary boot path = 4.1.0.0.0.0.0
Initiating System Activity
The Booting Process

Console IO Dependent Code (IODC) revision 4
Boot IO Dependent Code (IODC) revision 4

Soft Booted.
MMSAVE Version 2.2
DUMPAREA found, save main memory to disc
ISL loaded

ISL Revision A.00.28 July 15, 1993

ISL booting START AUTO

In Example 2-5, autoboot must be turned on, and an autoboot file (also known as an autoexecute file) must reside in the logical interchange format (LIF) directory for ISL to autoboot. If not, you get the message Cannot find an autoexecute file. AUTOBOOT ABORTED. For information on turning on autoboot, refer to Chapter 3, “System Startup Functions.” For information on replacing autoboot files using SYSGEN, refer to Chapter 8, “Modifying System File Configurations.”

Interrupting an Autobooting System

Even with the autoboot sequence in effect, you can override it to select an alternate boot medium (for example, a tape drive or another disk drive), to activate a different ISL utility, or to enter a different set of options. This is accomplished by pressing any key within 10 seconds after receiving the message that autoboot has been enabled.

Example 2-4 provides a partial listing of an interrupted autoboot sequence for an N-Class system. Other systems may display different messages and boot paths.

Example 2-4. Interrupting Autobooting an N-Class System.

TC

Execution of this command irrecoverably halts all system processing and I/O activity and restarts the computer system.

Type Y to confirm your intention to restart the system: (Y/[N]) y

y

-> SPU hardware was successfully reset.

....

<table>
<thead>
<tr>
<th>Processor Number</th>
<th>Speed</th>
<th>State</th>
<th>CoProcessor State</th>
<th>Cache Size Inst</th>
<th>Data</th>
</tr>
</thead>
</table>

Chapter 2
Initiating System Activity

The Booting Process

<table>
<thead>
<tr>
<th></th>
<th>Central Bus Speed (in MHz)</th>
<th>133</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Available Memory</td>
<td>2097152 KB</td>
</tr>
<tr>
<td></td>
<td>Good Memory Required</td>
<td>Not initialized. Defaults to 32 MB.</td>
</tr>
</tbody>
</table>

Processor is booting from first available device.
To discontinue, press any key within 10 seconds. <press key.>
Boot terminated.

--- Main Menu ---

Command	Description
BOOT [PRI|ALT|<path>] | Boot from specified path
PATH [PRI|ALT] [<path>] | Display or modify a path
SEARCH [DISPLAY|IPL] [<path>] | Search for boot devices

COnfiguration menu | Displays or sets boot values
INformation menu | Displays hardware information
SERvice menu | Displays service commands

DISplay | Redisplay the current menu
HELP [<menu>|<command>] | Display help for menu or command
RESET | Restart the system

Main Menu: Enter command or menu > bo
Interact with IPL (Y, N, or Cancel)?> y

Booting...
Boot IO Dependent Code (IODC) revision 1
SOFT Booted.

:<ctl-B>

GSP Host Name: csyprel18(csysas18)
GSP> tc

Interact with IPL (Y, N, or Cancel)?> y

Booting...
Boot IO Dependent Code (IODC) revision 1

SOFT Booted.
MMSAVE Version 2.5
DUMPAREA found, save main memory to disc
ISL loaded

ISL Revision A.00.38 OCT 26, 1994

ISL>

ISL> help

HELP Help Facility
LS List ISL utilities
AUTOBOOT Set or clear autoboot flag in stable storage
AUTOSEARCH Set or clear autosearch flag in stable storage
PRIMPATH Modify primary boot path in stable storage
ALTPATH Modify alternate boot path in stable storage
CONSPATH Modify system console path in stable storage
DISPLAY Display boot and console paths in stable storage
LSAUTOFL List contents of autoboot file
FASTSIZE Sets or displays FASTSIZE
800SUPPORT Boots the s800 Support Kernel from the boot device
700SUPPORT Boot the s700 Support Kernel from the boot device
READNVM Displays contents of one word of NVM
READSS Displays contents of one word of stable storage
Initiating System Activity
The Booting Process

LSBATCH List contents of batch file
BATCH Execute commands in batch file
LSEST List contents of EST (Extended Self Test) file
EST Execute commands in EST (Extended Self Test) file

Enter 'LS' to see a list of the ISL utilities.

ISL>

When the sequence is interrupted, you are asked to select whether the system should boot
from the primary system disk or from a system load tape on the alternate boot path. A
third prompt allows you to enter a different boot path interactively. As another option, if
you enter a "?" at the Enter boot path, command, or ? prompt, you see a menu of boot
command options.

The menu and boot command options can differ depending on your system. Example 2-5
shows the menu for an N-Class System.

Example 2-5. Boot Command Options for an N-Class System

---- Main Menu ---

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot [PRI</td>
<td>ALT]<path>]</td>
</tr>
<tr>
<td>Path [PRI</td>
<td>ALT] [<path>]</td>
</tr>
<tr>
<td>SEArch [DISPLAY</td>
<td>IPL] [<path>]</td>
</tr>
<tr>
<td>Configuration menu</td>
<td>Displays or sets boot values</td>
</tr>
<tr>
<td>Information menu</td>
<td>Displays hardware information</td>
</tr>
<tr>
<td>Service menu</td>
<td>Displays service commands</td>
</tr>
<tr>
<td>Display</td>
<td>Redisplay the current menu</td>
</tr>
<tr>
<td>HELP [<menu></td>
<td><command>]</td>
</tr>
<tr>
<td>RESET</td>
<td>Restart the system</td>
</tr>
</tbody>
</table>

Main Menu: Enter command or menu >

If you enter an improper boot path, forget to place the boot device online, or if the disk or
tape medium is defective, the system displays a boot device status along with one or more
four-character boot error codes on the system console. Example 2-6 demonstrates a
system's possible response to an improper boot path.

Example 2-6. A System's Response to an Improper Boot Path

GSP> tc
TC

Execution of this command irrecoverably halts all system processing and I/O activity and restarts the computer system.

Type Y to confirm your intention to restart the system: (Y/[N]) y

```
y
-> SPU hardware was successfully reset.
```

GSP Host Name: csypre18(csypsas18)

GSP>

********** VIRTUAL FRONT PANEL **********
System Boot detected

LEDs: RUN ATTENTION FAULT REMOTE POWER
FLASH FLASH OFF ON ON

platform config 626F
processor test 1142
. . .
processor test 1142
platform test 612A
I/O config 8238

************ EARLY BOOT VFP ************
End of early boot detected

Firmware Version 21.32

Duplex Console IO Dependent Code (IODC) revision 1

(c) Copyright 1995-2000, Hewlett-Packard Company, All rights reserved
The Booting Process

Processor | Speed | State | CoProcessor State | Cache Size
Number		------------------	------------------	------------
1 | 540 MHz | Active | Functional | 512 KB 1 MB
3 | Unknown | Stopped:Deconfigured | Unknown | 512 KB 1 MB

Central Bus Speed (in MHz): 133
Available Memory: 2097152 KB
Good Memory Required: Not initialized. Defaults to 32 MB.

Primary boot path: 0/0/2/0.6
Alternate boot path: 0/0/1/0.6
Console path: 0/0/4/0.0
Keyboard path: 0/0/4/0.0

---- Main Menu ---

Command Description
------- -----------
BOot [PRI|ALT]<path> Boot from specified path
PAth [PRI|ALT]<path> Display or modify a path
SEArch [DIsplay|IPL]<path> Search for boot devices
COnfiguration menu Displays or sets boot values
INformation menu Displays hardware information
SERvice menu Displays service commands
DIsplay Redisplay the current menu
HElp [<menu>|<command>] Display help for menu or command
RESET Restart the system

Main Menu: Enter command or menu > bo 8.2.4
Interact with IPL (Y, N, or Cancel)?> y

Booting...
Not a Valid Boot Path.
Initiating System Activity
The Booting Process

****************** SYSTEM ALERT ******************
SYSTEM NAME: csyprel18(csyasas18)
DATE: 09/15/1999 TIME: 19:25:29
ALERT LEVEL: 15 = Fatal hardware or configuration problem prevents operation

REASON FOR ALERT
SOURCE: 8 = I/O
SOURCE DETAIL: 6 = disk SOURCE ID: 0
PROBLEM DETAIL: 3 = functional failure

LEDs: RUN ATTENTION FAULT REMOTE POWER
FLASH FLASH OFF ON ON

0x000010F386001480 00000000 00000000 - type 0 = Data Field Unused
0x580018F386001480 00006308 0F13191D - type 11 = Timestamp 09/15/1999 19:25:29
A: ack read of this entry - X: Disable all future alert messages
Anything else skip redisplay the log entry
->Choice:

->Choice:a

<hang....>

ctl-b, tc to get back to bch prompt.........]

An N-Class system was used in example 2-6. Other HP e3000 systems perform similarly, although their boot paths may be different from the example shown. For an explanation of boot error codes, refer to *MPE/iX Error Message Manual Volumes I, II, and III*.

The message Interact with IPL (Y or N)? gives you an additional chance to autoboot even if you previously indicated an autoboot override (or have autoboot disabled). Answering NO to the Interact message returns the system to attempt an autoboot.

Interactively Booting the System with Autoboot Disabled

Interactively booting the system with autoboot disabled allows you to select a particular boot path or to activate ISL from the keyboard.

The initial interactive sequence is similar to the initial autoboot sequence, except in the interactive sequence, the system does not prompt the user with the option to override the process. Example 2-7 demonstrates the interactive boot sequence for an N-Class system. The screen display may contain a different boot path and additional information, depending on the system you are using.
NOTE If you have a 99X system, you must transfer to the service processor before you reset the system.

Example 2-7. Interactively Booting an N-Class System

GSP> tc

TC

Execution of this command irrecoverably halts all system processing and I/O activity and restarts the computer system.

Type Y to confirm your intention to restart the system: (Y/[N]) y

y

-> SPU hardware was successfully reset.

GSP Host Name: csyprel18(csysas18)

GSP>

********** VIRTUAL FRONT PANEL **********
System Boot detected

************ EARLY BOOT VFP *************
End of early boot detected

Firmware Version 21.32
Duplex Console IO Dependent Code (IODC) revision 1

--
(c) Copyright 1995-2000, Hewlett-Packard Company, All rights reserved
--

<table>
<thead>
<tr>
<th>Processor Number</th>
<th>Speed</th>
<th>State</th>
<th>CoProcessor State</th>
<th>Cache Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>540 MHz</td>
<td>Active</td>
<td>Functional</td>
<td>512 KB</td>
</tr>
<tr>
<td>3</td>
<td>Unknown</td>
<td>Stopped:Deconfigured</td>
<td>Unknown</td>
<td>512 KB</td>
</tr>
</tbody>
</table>

Central Bus Speed (in MHz) : 133
Available Memory : 2097152 KB
Good Memory Required : Not initialized. Defaults to 32 MB.

Primary boot path: 0/0/2/0.6
Alternate boot path: 0/0/1/0.6
Console path: 0/0/4/0.0
Keyboard path: 0/0/4/0.0

---- Main Menu ---

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot [PRI</td>
<td>ALT]<path>]</td>
</tr>
<tr>
<td>Path [PRI</td>
<td>ALT] [<path>]</td>
</tr>
<tr>
<td>Search [Display</td>
<td>IPL] [<path>]</td>
</tr>
<tr>
<td>Configuration menu</td>
<td>Displays or sets boot values</td>
</tr>
<tr>
<td>Information menu</td>
<td>Displays hardware information</td>
</tr>
<tr>
<td>Service menu</td>
<td>Displays service commands</td>
</tr>
<tr>
<td>Display</td>
<td>Redisplay the current menu</td>
</tr>
<tr>
<td>Help [<menu></td>
<td><command>]</td>
</tr>
<tr>
<td>Reset</td>
<td>Restart the system</td>
</tr>
</tbody>
</table>

Main Menu: Enter command or menu > bo
Interact with IPL (Y, N, or Cancel)? > y

Booting...
Boot IO Dependent Code (IODC) revision 1

SOFT Booted.
In this example, the system halts at ISL and then waits for the operator to issue an ISL command. For more information on ISL and ISL utilities, refer to Chapter 3, “System Startup Functions.”

Bypassing the Disabled Autoboot Setting

Answering NO to the prompt Interact with IPL (Y or N)? causes the system to ignore a disabled autoboot flag setting and attempt to autoboot.
Example 2-10 demonstrates bypassing a current disabled autoboot flag setting in order to autoboot.

Example 2-8. Bypassing the Disabled Autoboot Setting When Booting a System

GSP> tc

TC

Execution of this command irrecoverably halts all system processing and I/O activity and restarts the computer system.

Type Y to confirm your intention to restart the system: (Y/[N]) y

y

-> SPU hardware was successfully reset.

GSP Host Name: csyprel18(csysas18)
GSP>

********** VIRTUAL FRONT PANEL **********
System Boot detected

LEDs:
- **RUN**
- **ATTENTION**
- **FAULT**
- **REMOTE**
- **POWER**
- **FLASH**
- **FLASH**
- **OFF**
- **ON**
- **ON**

platform config 626F
Initiating System Activity

The Booting Process

<table>
<thead>
<tr>
<th>processor</th>
<th>test</th>
<th>1142</th>
</tr>
</thead>
<tbody>
<tr>
<td>processor</td>
<td>test</td>
<td>1100</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>platform</td>
<td>test</td>
<td>612A</td>
</tr>
<tr>
<td>I/O</td>
<td>config</td>
<td>8238</td>
</tr>
</tbody>
</table>

********** EARLY BOOT VFP **********

End of early boot detected

Firmware Version 21.32

Duplex Console IO Dependent Code (IODC) revision 1

(c) Copyright 1995-2000, Hewlett-Packard Company, All rights reserved

<table>
<thead>
<tr>
<th>Processor Number</th>
<th>Speed</th>
<th>State</th>
<th>CoProcessor State</th>
<th>Cache Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>540 MHz</td>
<td>Active</td>
<td>Functional</td>
<td>512 KB</td>
</tr>
<tr>
<td>3</td>
<td>Unknown</td>
<td>Stopped:Deconfigured</td>
<td>Unknown</td>
<td>512 KB</td>
</tr>
</tbody>
</table>

Central Bus Speed (in MHz) : 133
Available Memory : 2097152 KB
Good Memory Required : Not initialized. Defaults to 32 MB.

Primary boot path: 0/0/2/0.6
Alternate boot path: 0/0/1/0.6
Console path: 0/0/4/0.0
Keyboard path: 0/0/4/0.0

---- Main Menu ---

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
Initiating System Activity

The Booting Process

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Boot [PRI</td>
<td>ALT]<path>`</td>
</tr>
<tr>
<td>`Path [PRI</td>
<td>ALT] [<path>]`</td>
</tr>
<tr>
<td>`Search [D</td>
<td>I]<path>`</td>
</tr>
</tbody>
</table>

Configuration menu
- Displays or sets boot values

Information menu
- Displays hardware information

Service menu
- Displays service commands

Display
- Redisplay the current menu

Help [<menu>|<command>]
- Display help for menu or command

RESET
- Restart the system

```
Main Menu: Enter command or menu > bo 0/0/2/0.6
Interact with IPL (Y, N, or Cancel)? > n

Booting...

Boot IO Dependent Code (IODC) revision 1

SOFT Booted.

MMSAVE Version 2.5

DUMPAREA protected, proceeding to ISL without memsave

ISL loaded

ISL Revision A.00.43 Apr 12, 2000

Cannot find an auto-execute file. AUTOBOOT ABORTED.

ISL>
```
System Startup Procedure

The following procedure is an example of what to enter and what it looks like to start a system. To initiate the startup process enter:

CTRL B

NOTE

If you have a 99X system, you must transfer to the service processor before you reset the system.

```
CM> SP
```

If you have an N-Class system, a PDC screen is displayed. Type BO to boot from the primary path.

Example 2-9. System Startup Procedure

```
GSP> tc

TC

Execution of this command irrecoverably halts all system processing and I/O activity and restarts the computer system.

Type Y to confirm your intention to restart the system: (Y/[N]) y

y

-> SPU hardware was successfully reset.

GSP Host Name: csyprel18(csysas18)

GSP>

********** VIRTUAL FRONT PANEL **********

System Boot detected

LEDs: RUN ATTENTION FAULT REMOTE POWER

FLASH FLASH OFF ON ON

platform config 626F
processor test 1142
processor test 1100
...

Chapter 2
Initiating System Activity

System Startup Procedure

processor      test           1142
memory         config         7280
...
memory         config         7280
I/O            test           8107
I/O            test           8107
processor     test           1142
platform      test           612A
I/O           config         8238

**************************************************
************ EARLY BOOT VFP **************
End of early boot detected
**************************************************

Firmware Version  21.32

Duplex Console IO Dependent Code (IODC) revision 1

(c) Copyright 1995-2000, Hewlett-Packard Company, All rights reserved

<table>
<thead>
<tr>
<th>Processor</th>
<th>Speed</th>
<th>State</th>
<th>CoProcessor State</th>
<th>Cache Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>-------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>540 MHz</td>
<td>Active</td>
<td>Functional</td>
<td>512 KB</td>
</tr>
<tr>
<td>3</td>
<td>Unknown</td>
<td>Stopped:Deconfigured</td>
<td>Unknown</td>
<td>512 KB</td>
</tr>
</tbody>
</table>

Central Bus Speed (in MHz) : 133
Available Memory : 2097152 KB
Good Memory Required : Not initialized. Defaults to 32 MB.

Primary boot path: 0/0/2/0.6
Alternate boot path: 0/0/1/0.6
Console path: 0/0/4/0.0
Keyboard path: 0/0/4/0.0
### Main Menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot [PRI</td>
<td>ALT</td>
</tr>
<tr>
<td>Path [PRI</td>
<td>ALT] [&lt;path&gt;]</td>
</tr>
<tr>
<td>Search [Display</td>
<td>IPL] [&lt;path&gt;]</td>
</tr>
<tr>
<td>Configuration menu</td>
<td>Displays or sets boot values</td>
</tr>
<tr>
<td>Information menu</td>
<td>Displays hardware information</td>
</tr>
<tr>
<td>Service menu</td>
<td>Displays service commands</td>
</tr>
<tr>
<td>Display</td>
<td>Redisplay the current menu</td>
</tr>
<tr>
<td>Help [&lt;menu&gt;</td>
<td>&lt;command&gt;]</td>
</tr>
<tr>
<td>RESET</td>
<td>Restart the system</td>
</tr>
</tbody>
</table>

Main Menu: Enter command or menu > bo
Interact with IPL (Y, N, or Cancel)?> y

Booting...
Boot IO Dependent Code (IODC) revision 1

SOFT Booted.
MMSAVE Version 2.5
DUMPAREA protected, proceeding to ISL without memsave
ISL loaded

ISL Revision A.00.43 Apr 12, 2000

ISL> start recovery
MPE/iX launch facility

Scanning PCI BUS 0       ++*..++..........................
Scanning PCI BUS 8       ...............................%
Scanning PCI BUS 10      *................................
Scanning PCI BUS 20      *................................
Scanning PCI BUS 28      +...............................%
Scanning PCI BUS 40      ...............................%
Scanning PCI BUS 50      ...............................%
Initiating System Activity

System Startup Procedure

Scanning PCI BUS 60
Scanning PCI BUS 80
Scanning PCI BUS 90
Scanning PCI BUS A0
Scanning PCI BUS C0
Scanning PCI BUS D0
Scanning PCI BUS E0

initialize_genesis - Ver bld1: <<pci 2.1601>>

Wed, Nov 15, 2000, 11:45:08 AM (y/n)? y

initialize_genesis = Ready to configure I/O

[CDM] 8 8 0 18

NOTE Currently there is no autoexecute file available; therefore, you must ignore the statement Cannot find an auto-execute file. AUTOBOOT ABORTED. This does not present any problems; just continue with the START command in ISL.

For further information about system startups, refer to Chapter 3, “System Startup Functions.”
3 System Startup Functions

The initial system loader (ISL) provides a command-driven user interface for accessing boot utilities or issuing ISL commands to display or change system startup functions. When the system is booted from tape (tape boots), processor-dependent code (PDC) directly loads the ISL. When the system is booted from disk (disk boots), PDC and input/output-dependent code (IODC) boot the utility MMSAVE, which in turn boots ISL.

When loaded, the ISL displays its revision number and prompts for input:

ISL Revision A.00.43  Apr 12, 2000

ISL>

The prompt changes to ISL>, indicating the ISL is active.
Initial System Loader (ISL)

On tape boots, the ISL is loaded directly by the processor-dependent code (PDC). ISL reads the logical interchange format (LIF) directory from tape and uses this directory to find other files on the tape.

On disk boots, the PDC and IODC boot the utility MMSAVE, which in turn boots the ISL. PDC and IODC read the first record or sector of the boot device, which is the LIF label. The LIF label contains a pointer to the LIF directory which contains a pointer to the MMSAVE boot image. PDC reads and launches MMSAVE. MMSAVE writes a 16-megabyte, (32 megabyte for 99x system, 64 MB for N-Class and A-Class systems) section of main memory to the DUMPAREA file, whose address is found in the LIF directory. This allows memory space for the ISL and DUMP utilities to be loaded. MMSAVE boots ISL, which then uses the LIF label to find the LIF directory. As a last step, ISL uses the directory to find other files it needs.

The system displays messages indicating the completion of the booting and loading routines as they occur.

Using Initial System Loader (ISL) Commands

ISL commands change or display boot path information and ISL utility names. Table 3-1. lists commands that do not execute a utility function. ISL utilities and options are described later in this chapter.

Table 3-1. ISL Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELP</td>
<td>Help Facility</td>
</tr>
<tr>
<td>LS</td>
<td>List ISL utilities</td>
</tr>
<tr>
<td>AUTOBOOT</td>
<td>Set or clear autoboot flag in stable storage</td>
</tr>
<tr>
<td>AUTOSEARCH</td>
<td>Set or clear autosearch flag in stable storage</td>
</tr>
<tr>
<td>PRIMPATH</td>
<td>Modify primary boot path in stable storage</td>
</tr>
<tr>
<td>ALTPATH</td>
<td>Modify alternate boot path in stable storage</td>
</tr>
<tr>
<td>CONSPATH</td>
<td>Modify system console path in stable storage</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>Display boot and console paths in stable storage</td>
</tr>
<tr>
<td>LSAUTOFL</td>
<td>List contents of autoboot file</td>
</tr>
<tr>
<td>FASTSIZE</td>
<td>Sets or displays FASTSIZE</td>
</tr>
<tr>
<td>800SUPPORT</td>
<td>Boots the s800 Support Kernel from the boot device</td>
</tr>
<tr>
<td>700SUPPORT</td>
<td>Boot the s700 Support Kernel from the boot device</td>
</tr>
<tr>
<td>READNVM</td>
<td>Displays contents of one word of NVM</td>
</tr>
<tr>
<td>READSS</td>
<td>Displays contents of one word of stable storage</td>
</tr>
</tbody>
</table>
Table 3-1. ISL Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSBATCH</td>
<td>List contents of batch file</td>
</tr>
<tr>
<td>BATCH</td>
<td>Execute commands in batch file</td>
</tr>
<tr>
<td>LSEST</td>
<td>List contents of EST (Extended Self Test) file</td>
</tr>
<tr>
<td>EST</td>
<td>Execute commands in EST (Extended Self Test) file</td>
</tr>
</tbody>
</table>

For more information on the contents of stable storage and NVM, refer to Appendix C, “Reading Stable Storage and Nonvolatile Memory.”

Using the Help Facility for ISL Commands

Example 3-1 demonstrates using the ISL command, HELP. To display help listings for all ISL commands, enter either HELP, HE, or the symbol “?” at the ISL prompt: The display on your screen may vary depending on the model of HP 3000 you have.

Example 3-1. Using the HELP Command

```
ISL> HE
HELP Help Facility
LS List ISL utilities
AUTOBOOT Set or clear autoboot flag in stable storage
AUTOSEARCH Set or clear autosearch flag in stable storage
PRIMPATH Modify primary boot path in stable storage
ALTPATH Modify alternate boot path in stable storage
CONSPATH Modify system console path in stable storage
DISPLAY Display boot and console paths in stable storage
LSAUTOFL List contents of autoboot file
FASTSIZE Sets or displays FASTSIZE
800SUPPORT Boots the s800 Support Kernel from the boot device
700SUPPORT Boot the s700 Support Kernel from the boot device
READNVM Displays contents of one word of NVM
READSS Displays contents of one word of stable storage
LSBATCH List contents of batch file
BATCH Execute commands in batch file
LSEST List contents of EST (Extended Self Test) file
EST Execute commands in EST (Extended Self Test) file
```
NOTE The list of ISL utilities differs, depending upon whether they have been loaded from tape or disk and upon which model of HP e3000 you have. The utilities listed in Example 3-2 were loaded from disk.

Listing Available ISL Utilities

Example 3-2 demonstrates using the ISL LS command to display available ISL utilities. To generate a list of the utilities available on the boot medium, enter LISTF or LS at the ISL prompt.

Example 3-2. Listing Available ISL Utilities

ISL> ls

Utilities on this system are:

<table>
<thead>
<tr>
<th>filename</th>
<th>type</th>
<th>start</th>
<th>size</th>
<th>created</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISL</td>
<td>-12864</td>
<td>1327872</td>
<td>306</td>
<td>00/09/22 06:30:57</td>
</tr>
<tr>
<td>START</td>
<td>-12864</td>
<td>4955600</td>
<td>52168</td>
<td>00/10/20 05:14:01</td>
</tr>
<tr>
<td>DISCUTIL</td>
<td>-12864</td>
<td>1533952</td>
<td>22328</td>
<td>00/10/20 05:09:44</td>
</tr>
<tr>
<td>SAT</td>
<td>-12864</td>
<td>4902192</td>
<td>29512</td>
<td>00/10/20 05:11:18</td>
</tr>
<tr>
<td>DUMP</td>
<td>-12864</td>
<td>4935216</td>
<td>20344</td>
<td>00/10/20 05:10:01</td>
</tr>
<tr>
<td>STAGEISL</td>
<td>-12864</td>
<td>1502208</td>
<td>20552</td>
<td>00/10/20 05:11:35</td>
</tr>
<tr>
<td>A1002AI</td>
<td>-12864</td>
<td>677584</td>
<td>688</td>
<td>00/02/12 08:35:10</td>
</tr>
<tr>
<td>A1002AM</td>
<td>-12864</td>
<td>678272</td>
<td>512</td>
<td>00/02/12 08:35:13</td>
</tr>
<tr>
<td>A1002AP</td>
<td>-12864</td>
<td>678784</td>
<td>3744</td>
<td>00/02/12 08:35:16</td>
</tr>
<tr>
<td>A1100AI</td>
<td>-12864</td>
<td>682528</td>
<td>1120</td>
<td>00/03/07 16:19:51</td>
</tr>
<tr>
<td>A1100AM</td>
<td>-12864</td>
<td>683648</td>
<td>752</td>
<td>00/03/07 16:19:51</td>
</tr>
<tr>
<td>A1100AP</td>
<td>-12864</td>
<td>684400</td>
<td>3568</td>
<td>00/03/07 16:20:01</td>
</tr>
<tr>
<td>EDBC</td>
<td>-12864</td>
<td>689696</td>
<td>1696</td>
<td>00/09/25 05:16:23</td>
</tr>
<tr>
<td>EDPROC</td>
<td>-12864</td>
<td>1370544</td>
<td>6951</td>
<td>00/09/25 05:16:25</td>
</tr>
</tbody>
</table>
**System Startup Functions**

**Initial System Loader (ISL)**

- `MDIAG`: 00/09/25 05:16:27
- `MPROC`: 00/09/25 05:16:28
- `ODE`: 00/09/25 05:16:28
- `ODEDATA`: 00/09/25 05:16:32
- `TDIAG`: 00/09/25 05:16:37

Hit Return to continue.

<table>
<thead>
<tr>
<th>filename</th>
<th>type</th>
<th>start</th>
<th>size</th>
<th>created</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIPROC</td>
<td>-12864</td>
<td>506928</td>
<td>3488</td>
<td>00/09/25 05:16:38</td>
</tr>
<tr>
<td>BCDIAG</td>
<td>-12864</td>
<td>510416</td>
<td>704</td>
<td>00/02/12 08:36:27</td>
</tr>
<tr>
<td>CAEXR</td>
<td>-12864</td>
<td>511120</td>
<td>672</td>
<td>00/02/12 08:36:30</td>
</tr>
<tr>
<td>XMAP</td>
<td>-12864</td>
<td>511792</td>
<td>1568</td>
<td>00/02/12 08:36:36</td>
</tr>
<tr>
<td>CLKUTIL</td>
<td>-12864</td>
<td>513360</td>
<td>352</td>
<td>00/10/20 02:32:08</td>
</tr>
<tr>
<td>SADPATCH</td>
<td>-12864</td>
<td>513712</td>
<td>784</td>
<td>00/10/20 02:32:14</td>
</tr>
<tr>
<td>ODEDATA2</td>
<td>-12864</td>
<td>1454928</td>
<td>7712</td>
<td>00/09/25 05:16:35</td>
</tr>
</tbody>
</table>

ISL>
Activating and Deactivating Autoboot and Autosearch Functions

Enabling and disabling the autoboot and autosearch flags determines one of four boot device and console selections for system initialization. Hardware interprets the selections as follows:

**Manual** (autoboot off and autosearch off). Ask for the path to the boot device. Use the path that is indicated. Initialize the path given, and boot from it.

**Bootsearch** (autoboot off and autosearch on). Search for a boot device. (Devices are searched from the smallest to the largest physical address on the processor’s bus.) If the boot device has an incorrect data format, search for the next boot device. If no boot device exists, or all have the incorrect data format, execute manual selection.

**Autoboot** (autoboot on and autosearch off). Try to boot from the primary boot device specified in stable storage. If the boot device does not exist or has an incorrect data format, execute manual selection. Once booted, execute (performed by ISL) an autoboot file, which contains a command sequence, to bring up the operating system without operator intervention. If the autoboot file does not exist, prompt the operator for the utility command.

**Autosearch** (autoboot on and autosearch on). Try to boot from the boot device path stored in stable storage. If the boot device does not exist or has an incorrect data format, execute the boot search selection. Once booted, execute (performed by ISL) an autoboot file, which contains an autoboot sequence, to bring up the operating system without operator intervention. If the autoboot file does not exist, prompt the operator for the utility command.

To enable or disable these features, use the **AUTOBOOT** and **AUTOSEARCH** commands. Enter one or both of the commands and the desired setting (**ON/ OFF**) at the ISL prompt. The system responds with a message indicating the flag status:

ISL> **AUTOBOOT ON**

Autoboot is ON (enabled).

ISL> **AUTOBOOT OFF**

Autoboot is OFF (disabled).

ISL> **AUTOSEARCH ON**

Autosearch is ON (enabled).

ISL> **AUTOSEARCH OFF**

Autosearch is OFF (disabled).

For more information on the autoboot and autosearch flags, refer to Appendix C, “Reading Stable Storage and Nonvolatile Memory.”
Modifying Boot Paths in Stable Storage

The ISL commands PRIMPATH, ALTPATH, and CONSPATH are available for placing new primary boot path, alternate boot path, or console boot path information in stable storage. The changes need to be in stable storage to execute the autoboot sequence properly in the event of a power outage or other serious failure.

CAUTION The commands described in the above paragraph may disrupt normal system functions if used inappropriately. For this reason, do not attempt to use these commands without assistance from Hewlett-Packard service personnel.

To execute any of these three commands, enter the command with its appropriate parameter or enter Return after the command and wait to be prompted for further input:

```
ISL> altpath 0/0/1/0.6
```

or

```
ISL> ALTPATH
Enter alternate boot path: 0/0/1/0.6
```

To withdraw a command (without changing the path), enter Return after entering the command without any parameter. For example,

```
ISL> ALTPATH
Enter alternate boot path: Return
Invalid Input.
```

Trailing zeros are not required when a boot path is entered:

```
ISL> PRIMPATH primpath 0/0/2/0.6.0.0
ISL> CONSPATH 0/0/4/0
```

If an improper path format is entered, or you have withdrawn a command as shown above, the system issues an Invalid Input message. Then ISL prompts for a new command:

```
ISL> PRIMPATH 240
Invalid Input.
```

Displaying Current Boot Path, Autoboot, and Autosearch Settings

Since an improper path keeps the system from booting, use the DISPLAY command to check the paths entered. Double check these entries against a recent I/O map from the ISL IOMAP utility or a configuration listing from the SYSGEN utility. For more information on SYSGEN, refer to Chapter 4, “Using the System Generator (SYSGEN).”

The DISPLAY or DI command lists the autoboot and autosearch settings, the primary boot path, the alternate boot path, and the system console path held in stable storage. Use the DISPLAY command to verify that correct information resides in stable storage. Example 3-3 demonstrates using the ISL DISPLAY command. This is an example from a N-class system. The boot paths may vary, depending on the system.
Example 3-3. Displaying an Example of ISL Settings

ISL> display
    Fastsiz e value is 0000000F
    Autoboot is OFF (disabled)
    Autosearch is OFF (disabled)
    Primary boot path is 0/0/2/0.6.0.0.0.0.0
    Primary boot path is (hex) 0/0/2/0.6.0.0.0.0.0
    Alternate boot path is 0/0/1/0.6.0.0.0.0.0
    Alternate boot path is (hex) 0/0/1/0.6.0.0.0.0.0
    System console path is 0/0/4/0.0.0.0.0.0.0
    System console path is (hex) 0/0/4/0.0.0.0.0.0.0

ISL>

Setting Fastsize

If fastsize is set to the wrong value, you cannot do installs or updates. The only value that is acceptable is “F.” If you try to do an update or install with fastsize set to the wrong value, you will receive an error message that reads UTILITY REQUIRES MORE MEMORY THAN IS CONFIGURED.

Consider the following example.

    ISL> DISPLAY

    Fastsiz e value is 0000003
       .
       .

This fastsize value is invalid. You must reset it to “F”; therefore, at the ISL prompt, enter Fastsize F, as in the following example.

    ISL> FASTSIZE F

If you changed the value of fastsize, you must reset the system for the new value to take effect. For more information on resetting the system, refer to Chapter 2, “Initiating System Activity.”

Listing Autoboot File Contents

To list the contents of the current autoboot file, enter either LISTAUTOFL or LSAUTOFL at the ISL prompt:

    ISL> LISTAUTOFL
**Reading Nonvolatile Memory (NVM)**

**NOTE** Not available on N-Class and A-Class systems

Nonvolatile memory stores system activity parameters, including a circular queue of the last six ISL utilities executed. This information remains intact, even through system failures.

To read the contents of NVM, enter `READNVM nn` at the prompt, where `nn` is the location to be read:

```
ISL> READNVM 68
```

Address 68 contains 0x32363334

For information on the contents and locations of NVM, refer to Appendix C, “Reading Stable Storage and Nonvolatile Memory.”

**Reading Stable Storage**

Stable storage stores boot path information along with other critical system parameters. Like NVM, stable storage maintains its information through system crashes and failures. Unlike NVM, stable storage maintains its information even if the memory card, containing stable storage, is removed from the backplane.

To read the contents of stable storage, enter `READSS nn` at the prompt, where `nn` is the location to be read:

```
ISL> READSS 40
```

Address 40 contains 0xFFFFFFFF

For information on the contents and locations of stable storage, refer to Appendix C, “Reading Stable Storage and Nonvolatile Memory.”

**Reading and Setting the Hardware Clock**

The ISL utility `CLKUTIL` reads and sets the battery backed-up hardware clock. This clock maintains Greenwich Mean Time (GMT) independently of the software clock that is displayed when you enter the ISL `START` utility or any of the other ISL utilities that support the software clock. (Refer to Example 3-7 for an example of the software clock interaction.). The `CLKUTIL` utility, therefore, reads the date and time that were previously set with `CLKUTIL`, but does not itself reflect the changes that you may make while in any other ISL utility.

The hardware clock should be set to GMT if the clock displays are to be correct on the booted system. The hardware clock provides the basis for time displays that are part of some ISL utilities.

When the local time is entered during particular ISL utilities, the system computes an offset and stores it in stable storage. During a boot, the GMT and this offset are combined.
System Startup Functions
Reading Nonvolatile Memory (NVM)

to produce the local time, displayed on the console.
To read or set the hardware clock, enter:

    ISL> clkutil

The system responds with the following banner:

    SYSTEM FOR ISL STAND ALONE UTILITIES. [IHO, SPU LAB]

Version 1.0

*******************************************************************************
******                      CLKUTIL                       ******
****** (C) Copyright Hewlett-Packard Co 1987, 1988, 1990 ******
******               All Rights Reserved                  ******
******                                                    ******
******  HP shall not be liable for any damages resulting ******
******  from the use of this program.                     ******
******                                                    ******
******                 Version A.02.00                    ******
******                                                    ******
********************************************************************************

To read the clock, enter `r` at the `CLKUTIL` prompt:

    enter command :  (r) read clock, (s) set clock (e) exit> r

The system responds with a message similar to the following:

    THU, SEP 16, 1999,  7:06:08 PM

To set the clock, enter `s` at the `CLKUTIL` prompt:

    enter command :  (r) read clock, (s) set clock (e) exit> s

The system responds with a message similar to the following:

    Enter Date  MM/DD/YYYY
    11/16/2000

When the `enter date` prompt appears, enter the date in the correct format: `mm` is a two-digit number, 1-12, representing the month; `dd` is a two-digit number, 1-31, representing the day of the month; and `yyyy` is a four-digit number representing the year. (You can also enter just the last two digits for the year.)

The system continues by issuing the following prompt:

    Enter Time  HH:MM:SS
    19:12:00

Enter the time using Greenwich Mean Time in 24-hour format.
The system requests verification of the adjusted date and time by issuing a message
similar to the following:

THU, NOV 16, 2000,  7:12:00 PM
ok (y/n)?y

Entering y returns a message of:

clock set!
    Enter command : (r) read clock, (s) set clock (e) exit>e

Entering N returns you to the enter date prompt.
Pressing Return at the enter command prompt returns you to the ISL prompt.
ISL Boot Utilities

The system uses bootable ISL utilities to either load the system from tape or to start the system from disk. The current boot utilities are START, UPDATE, INSTALL, and DUMP. There are additional utilities for system management: SADPATCH, DISCUTIL, CLKUTIL, and SAT.

The START utility starts the system from disk. Use this utility to recover from a system hang or failure or to reboot the system after scheduled downtime.

Bringing in the system from tape is referred to as a system load. The system uses two utilities to perform a system load, which builds essential operating system files and data structures on disk. The two load utilities, UPDATE and INSTALL, have the option to boot the system from disk once the load operation is complete.

The INSTALL utility completely replaces the contents of the disk and places the base operating system files, including the system configuration files, on disk. If you have installed a new system over an already existing system, you can use the STORE/RESTORE utility to restore the original system dictionary, other subsystem files, and user files to the new system after the INSTALL is complete.

The UPDATE utility replaces the current base system files on disk and optionally replaces system configuration files (if you name a different configuration file when you use the UPDATE utility). If you do not name another configuration file, the original file will remain after the update.

The base system files contain the copy of the operating system to be placed on disk. As part of every system, these files make a minimal or base system. INSTALL and UPDATE utilities, optionally, attempt a software reboot from disk.

The DUMP utility writes the current state of the system main memory and secondary storage to tape for analysis. DUMP, also optionally, attempts a software reboot from disk.

Depending on the utility and the options specified, the system either halts at the end of the utility's execution or reboots from disk.

If you want to see a list of command options along with an explanation of correct usage and default values, enter help at the ISL prompt.
Starting the System

This section discusses using the initial system loader utility, START, that activates the operating system.

START is the ISL utility used most often, whether to boot the system from disk after a reset, to automatically reboot after the completion of the UPDATE, INSTALL, or DUMP utility, or to bring up the operating system after a shutdown.

START execution differs depending on the previously executed boot command. For example, a START after an INSTALL executes differently than a START after a shutdown or reset. START after an INSTALL may initialize the system member volumes. A START option after an INSTALL or UPDATE does not restart jobs.

There are, primarily, six load and start utilities for the operating system.

- START or START RECOVERY
- START NORECOVERY
- UPDATE or UPDATE NOCONFIG
- UPDATE CONFIG
- INSTALL
- DUMP

Using START and its Options

The ISL command for the START utility is START. The utility has several options:

```
START [;GROUP=cgn][;LOGON=acct] [{ ;RECOVERY
 ;NORECOVERY }]

[{ ;SINGLE-DISC [{ ;SINGLE-USER
 ;MULTI-DISC }] ;MULTI-USER }]

[{ ;SYSSTART
 ;NOSYSSTART }]
```

Specify START alone or with alternate options. Separate the options from the command and other options with a blank or semicolon.

Using the ISL START command without listing any options:

```
ISL> START
```

is the same as specifying the following default options:

```
ISL> START GROUP=bootup LOGON=OPERATOR.SYS RECOVERY&
 MULTI-USER MULTI-DISC SYSSTART
```
**System Startup Functions**

**Starting the System**

**NOTE**

bootup contains the CONFIG file that was used by the previous START NORECOVERY command. RECOVERY starts the system, but sets the fence at 14 which prevents any jobs or sessions from automatically starting.

These default options instruct the system to boot from disk, to use the configuration information last used to boot the system, attempts to log on as OPERATOR.SYS (if the OPERATOR user has been created), to restart all jobs and allow all users access to the system, to bring up all volumes present on the system, and to execute commands found in the SYSSTART file, SYSSTART.PUB.SYS.

Enter an alternate option through a keyword parameter, or several alternate options in groups of keyword parameters. The following command line shows an example of using multiple alternate options:

```
ISL> START GROUP=CONFG950 LOGON=JOHN.SMITH NORECOVERY&:
SINGLE-USER SINGLE-DISC
```

**Executing Commands During System Startup**

The file SYSSTART.PUB.SYS executes automatically at system startup if the SYSSTART parameter is specified in the START command. This file can be used to set up the normal user environment automatically when the system starts up. The contents of this file should include command parameters appropriate for your environment, such as the standard limits for jobs and sessions, spooler start commands, stream device identification, outfence priorities, event logging, and so on. These commands are then performed automatically for you whenever the system is restarted.

A SYSSTART file can contain selected MPE commands (and their parameters) that the system manager is allowed to execute except networking commands. (Networking commands should be executed from a job that is streamed from SYSSTART, or from a logon UDC for OPERATOR.SYS.) You can use the following commands in a SYSSTART file:

- ACCEPT
- ALLOCATE
- ALLOW
- ALTLOG
- COMMENT
- CONSOLE
- DEALLOCATE
- DISALLOW
- DISCRPS
- DOWN
- DOWNLOAD
- HEADOFF
- HEADON
- JOBFENCE
- JOBPRI
- JOBSECURITY
- LDISMOUNT
- LIMIT
- Lmount
- LOG
- MRJECOUNTROL
- OUTFENCE
- UP
- VMOUNT

- REFUSE
- STARTSESS
- STARTSPOOL
- STOPSPOOL
- STREAM
- STREAMS
- SUSPENDSPOOL
- TELL
- TELLOP
- TUNE
- UP
- VMOUNT
Create a SYSSTART file with any text editor. A properly formatted SYSSTART file is composed of five modules, labeled and placed in the following order: startup, warmstart, coolstart, update, and reload. Notice that each module must be separated by one or more asterisks. The following SYSSTART file sample is an example of the type of commands you might want to include in a SYSSTART file. It is not intended to suggest entries for your system's SYSSTART file.

Example 3-4. A Properly Formatted SYSSTART File

```
STARTUP
STREAMS 10
ALLOW 0.0;COMMANDS=REPLY
ALLOCATE COBOLII.PUB.SYS
LIMIT 8,16
JOBFENCE 6
OUTFENCE 6
OUTFENCE 12;LDEV=14
FILE T;DEV=TAPE

WARMSTART
STREAMS 10
ALLOW 0.0;COMMANDS=REPLY
ALLOCATE COBOLII.PUB.SYS
LIMIT 8,16
JOBFENCE 6
OUTFENCE 6
OUTFENCE 12;LDEV=14
FILE T;DEV=TAPE

COOLSTART
STREAMS 10
ALLOW 0.0;COMMANDS=REPLY
ALLOCATE COBOLII.PUB.SYS
LIMIT 8,16
JOBFENCE 6
OUTFENCE 6
OUTFENCE 12;LDEV=14
FILE T;DEV=TAPE

UPDATE
LIMIT 1,1
JOBFENCE 14
OUTFENCE 14
STARTSESS 20;MANAGER.SYS/PASSWORD;HIPRI;NOWAIT

RELOAD
LIMIT 1,1
JOBFENCE 14
OUTFENCE 14
STARTSESS 20;MANAGER.SYS/PASSWORD;HIPRI;NOWAIT
```

The STARTUP module is executed whenever the SYSSTART file is accessed. Place commands and parameters specific to an operation under the appropriate heading. If, for instance, you do not wish users to be able to log on immediately following an UPDATE (START) or INSTALL (START), insert commands in the update and install modules to limit the jobs and
sessions and raise the jobfence. Table 3-2. describes how each module is executed.

Table 3-2. Execution of SYSSTART File Modules

<table>
<thead>
<tr>
<th>Boot Utility Used</th>
<th>SYSSTART Module Executed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANY</td>
<td>startup</td>
</tr>
<tr>
<td>START (RECOVERY)</td>
<td>warmstart</td>
</tr>
<tr>
<td>START (NORECOVERY)</td>
<td>coolstart</td>
</tr>
<tr>
<td>UPDATE (START)</td>
<td>update</td>
</tr>
<tr>
<td>INSTALL (START)</td>
<td>reload</td>
</tr>
</tbody>
</table>

The SYSSTART file must be created by MANAGER.SYS and needs to reside on LDEV 1 to function properly. Once the file is created, use the following commands to copy the file to the appropriate location:

```
HELLO MANAGER.SYS
FILE SYSSTART;DEV=1
FCOPY FROM=tempfilename;TO=*SYSSTART;NEW
```

If an error exists in the SYSSTART file, the startup process ignores it and continues execution.

**Starting a HP e3000 (Series 900)**

The following steps comprise a procedure for booting MPE/iX on a HP e3000 (Series 900) computer system using START following a reset.

To start the system, perform the following steps:

1. Power on all attached peripheral devices, and ensure that the system disks are powered on.
2. Place the console in control mode. Enter:
   ```
 CTRL B
   ```
   The console control mode prompt (CM>) should appear on the console screen.
3. Reset the system using AP commands, boot from the primary path, and enter the START command at the ISL prompt.
   ```
 /need begin>
   ```

   **NOTE** If you have a 99X system, you must transfer to the service processor before you reset the system.

   ```
 CM> SP
   ```

Examples 3-5 and 3-6 demonstrate the messages received at the console of the Series 900 systems.
NOTE: The components of the system startup messages on all of the systems are similar; however, the messages can vary in I/O path descriptions depending on the system.

Example 3-5. Example of a Hard Reset from an N-Class System

GSP Host Name: csyprel18(csysas18)

GSP> rs

RS

Execution of this command irrecoverably halts all system processing and I/O activity and restarts the computer system.

Type Y to confirm your intention to restart the system: (Y/[N]) y

-> SPU hardware was successfully reset.

***********************************************************************
platform  config  6224
processor  test  1141
PDH  config  3277
PDH  config  3278
platform  config  626F
processor  test  1142
processor  test  1100
processor  test  1100
...
memory  test  71A4
memory  test  71A4
memory  test  71A4

***********************************************************************

************ EARLY BOOT VFP ************
End of early boot detected
***********************************************************************
Firmware Version 21.32

Duplex Console IO Dependent Code (IODC) revision 1

------------------------------------------------------------------------------
--
(c) Copyright 1995-2000, Hewlett-Packard Company, All rights reserved
------------------------------------------------------------------------------
--

<table>
<thead>
<tr>
<th>Processor Number</th>
<th>Speed</th>
<th>State</th>
<th>CoProcessor State</th>
<th>Cache Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>State</td>
<td>Inst</td>
</tr>
<tr>
<td>1</td>
<td>540 MHz</td>
<td>Active</td>
<td>Functional</td>
<td>512 KB</td>
</tr>
<tr>
<td>3</td>
<td>Unknown</td>
<td>Stopped:Deconfigured</td>
<td>Unknown</td>
<td>512 KB</td>
</tr>
</tbody>
</table>

Central Bus Speed (in MHz) : 133
Available Memory : 2097152 KB
Good Memory Required : Not initialized. Defaults to 32 MB.

Primary boot path: 0/0/2/0.6
Alternate boot path: 0/0/1/0.6
Console path: 0/0/4/0.0
Keyboard path: 0/0/4/0.0

---- Main Menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot [PRI</td>
<td>ALT]&lt;path&gt;</td>
</tr>
<tr>
<td>Path [PRI</td>
<td>ALT] [&lt;path&gt;]</td>
</tr>
<tr>
<td>Search [Display</td>
<td>IPL] [&lt;path&gt;]</td>
</tr>
</tbody>
</table>
System Startup Functions

Starting the System

Configuration menu
Displays or sets boot values

Information menu
Displays hardware information

Service menu
Displays service commands

Display
Redisplay the current menu

Help [<menu>|<command>]
Display help for menu or command

RESET
Restart the system

Main Menu: Enter command or menu > bo
Interact with IPL (Y, N, or Cancel)?> y

Booting...
Boot IO Dependent Code (IODC) revision 1

HARD Booted.
MMSAVE Version 2.5
DUMPAREA protected, proceeding to ISL without memsave
ISL loaded

ISL Revision A.00.43 Apr 12, 2000

ISL> start
MPE/iX launch facility

Scanning PCI BUS 0 ++..++.++....................
Scanning PCI BUS 8 ..........................
Scanning PCI BUS 10 ..........................
Scanning PCI BUS 20 ..........................
Scanning PCI BUS 28 ..........................
Scanning PCI BUS 40 ..........................
Scanning PCI BUS 50 ..........................
Scanning PCI BUS 60 ..........................
Scanning PCI BUS 80 ..........................
Scanning PCI BUS 90 ..........................
Scanning PCI BUS A0 ..........................
System Startup Functions
Starting the System

Scanning PCI BUS C0 +...............................
Scanning PCI BUS D0 ..............................
Scanning PCI BUS E0 ..............................
Initialize_genesis - Ver bld1: <<pci 2.1601>>

FRI, JAN 18, 2002, 11:19:14 AM (y/n)?

Initialize_genesis = Ready to configure I/O

[CDM] 8 8 0 18

Initialize genesis completed.
Create Console Messages kso completed.
Initialize memory manager completed.
Initialize resident kernel completed.
Initialize volume management and mount the System Disk
Initialize volume management completed.
Opening the native system library completed.
Initialize loader completed.
I/O boot path managers frozen in memory completed.
Vsm make no longer resident completed.
Initialize process management completed.
Initialize debug subsystem completed.
Initialize file system completed.
Initialize temporary UID/GID Databases completed.
Initialize non-resident services completed.
Begin binding compatibility mode SL
Compatibility mode SL binding complete
Create port process has been completed.

The following is a list of the boot options -
last boot command: START last configuration group: CONFIG
current boot command: START current configuration group: CONFIG
Last configuration group actually used by START: CONFIG
logon = OPERATOR.SYS
RECOVERY MULTI-USER
MULTI-DISK SYSSTART
System Startup Functions

Starting the System

Begin launching additional processors:

No additional processors found: 1 total processor.

Entering - System I/O configuration.

The path 0/0/1/0.10.0 was configured but is not available.
The path 0/0/1/0.8.0 was configured but is not available.
The path 0/0/1/0.9.0 was configured but is not available.
The path 0/12/0/0.2.0 was configured but is not available.
The path 0/12/0/1.2.0 was configured but is not available.
The path 0/2/0/1.2.0 was configured but is not available.
The path 0/4/0/1.2.0 was configured but is not available.
Leaving - System I/O configuration.

SYSTEM I/O AT BOOT TIME

<table>
<thead>
<tr>
<th>ldev</th>
<th>device</th>
<th>status</th>
<th>available</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HPC2490WD</td>
<td>configured</td>
<td>available</td>
<td>0/0/2/0.6.0</td>
</tr>
<tr>
<td>6</td>
<td>HP5000/F100</td>
<td>configured</td>
<td>not-available</td>
<td>0/0/1/0.8.0</td>
</tr>
<tr>
<td>7</td>
<td>HPC1537A</td>
<td>configured</td>
<td>not-available</td>
<td>0/12/0/0.2.0</td>
</tr>
<tr>
<td>8</td>
<td>HPC1537A</td>
<td>configured</td>
<td>not-available</td>
<td>0/12/0/1.2.0</td>
</tr>
<tr>
<td>10</td>
<td>HP7978A</td>
<td>configured</td>
<td>not-available</td>
<td>0/0/1/0.9.0</td>
</tr>
<tr>
<td>19</td>
<td>HP2688A</td>
<td>configured</td>
<td>not-available</td>
<td>0/0/1/0.10.0</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>configured</td>
<td>available</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>HPC1537A</td>
<td>configured</td>
<td>not-available</td>
<td>0/2/0/1.2.0</td>
</tr>
<tr>
<td>32</td>
<td>HPC1537A</td>
<td>configured</td>
<td>not-available</td>
<td>0/4/0/0.2.0</td>
</tr>
<tr>
<td>33</td>
<td>HPC1537A</td>
<td>configured</td>
<td>not-available</td>
<td>0/4/0/1.2.0</td>
</tr>
</tbody>
</table>

MEMORY AVAILABLE FOR USE (bytes): 2147483648

Entering - Mount all volumes

Mounting MASTER on LDEV 1

USERLOG RECOVERY COMPLETED for MPXL_SYSTEM_VOLUME_SET

NO PARALLEL PROCESSES FOR MOUNT_ALL_VOLUMES

-- Time spent in MOUNT_ALL_VOLUMES -> 0
Leaving - Mount all volumes

The current boot command has been saved on the system master.

NMLG FILE NUMBER 82 ON.

11:20/22/DCC STARTUP - ENTER - version C0500001 compiled 000612

11:20/22/ WARNING: I/O config from last START NORECOVERY will be used.

(DCCWARN=10 0)

[LAN_DUMP_SURR] Version A.00.70.000, PIN: #30

[PSI_DUMP_SURR] Version A.00.70.000, PIN: #3

[PBT_DUMP_SURR] Version A.00.70.066, PIN: #32

[ACC Dumpster SURR] Version A.00.70.003, PIN: #33

System State: Initializing Mode.

Reply Information Table has been initialized!

System State: Multiuser Mode.

11:20/1/Spooling of initially spooled devices is complete.

11:20/1/Set-up of Spooling Subsystem is complete.

11:20/37/The system has finished rebuilding the output spoolfile directory.

SYSTEM LOG FILE #83 IS ON

Initializing Job & Session

SESSION Scheduling Initialized

JOB Scheduling Initialized

Did not find a keyword in the first record of the SYSSTART file.

Initiate Operator Log On

MPE/iX: Successfully launched diagnostic monitor process.

Successfully launched System UPS Monitor process.

STM system manager started

Example 3-6. Example of a Soft Reset on an N-Class System

GSP Host Name: csyprel18(csysas18)

GSP> tc

TC

Execution of this command irrecoverably halts all system processing and
I/O activity and restarts the computer system.

Type Y to confirm your intention to restart the system: (Y/[N]) y

-> SPU hardware was successfully reset.

GSP Host Name: csyprel18(csysas18)
GSP>  
********** VIRTUAL FRONT PANEL **********
System Boot detected
******************************************************************************
LEDs:  RUN      ATTENTION     FAULT     REMOTE     POWER
       ON       FLASH         OFF       ON         ON
platform                  config                    626F
processor                 test                      1142
processor                 test                      1100
processor                 test                      1142
I/O                       test                      8107
I/O                       test                      8107
processor                 test                      1142
platform                  test                      612A
I/O                       config                    8238
******************************************************************************
************ EARLY BOOT VFP *************
End of early boot detected
******************************************************************************
Firmware Version  21.32
## System Startup Functions
### Starting the System

Duplex Console IO Dependent Code (IODC) revision 1

(c) Copyright 1995-2000, Hewlett-Packard Company, All rights reserved

<table>
<thead>
<tr>
<th>Processor Number</th>
<th>Speed</th>
<th>State</th>
<th>CoProcessor State</th>
<th>Cache Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>540 MHz</td>
<td>Active</td>
<td>Functional</td>
<td>512 KB</td>
</tr>
<tr>
<td>3</td>
<td>Unknown</td>
<td>Stopped: Deconfigured</td>
<td>Unknown</td>
<td>512 KB</td>
</tr>
</tbody>
</table>

Central Bus Speed (in MHz) : 133

Available Memory : 2097152 KB

Good Memory Required : Not initialized. Defaults to 32 MB.

Primary boot path: 0/0/2/0.6
Alternate boot path: 0/0/1/0.6
Console path: 0/0/4/0.0
Keyboard path: 0/0/4/0.0

### Main Menu

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot [PRI</td>
<td>ALT]&lt;path&gt;]</td>
</tr>
<tr>
<td>Path [PRI</td>
<td>ALT] [&lt;path&gt;]</td>
</tr>
<tr>
<td>Search [Display</td>
<td>IPL] [&lt;path&gt;]</td>
</tr>
<tr>
<td>Configuration menu</td>
<td>Displays or sets boot values</td>
</tr>
<tr>
<td>Information menu</td>
<td>Displays hardware information</td>
</tr>
<tr>
<td>Service menu</td>
<td>Displays service commands</td>
</tr>
<tr>
<td>Display</td>
<td>Redisplay the current menu</td>
</tr>
<tr>
<td>Help [&lt;menu&gt;</td>
<td>&lt;command&gt;]</td>
</tr>
<tr>
<td>Restart</td>
<td>Restart the system</td>
</tr>
</tbody>
</table>

---
Main Menu: Enter command or menu > bo
Interact with IPL (Y, N, or Cancel)? > y

Booting...

Boot IO Dependent Code (IODC) revision 1

SOFT Booted.
MMSAVE Version 2.5
DUMPAREA found, save main memory to disc
ISL loaded

ISL Revision A.00.43 Apr 12, 2000

ISL> start
MPE/iX launch facility

Scanning PCI BUS 0 ++*...............
Scanning PCI BUS 8 ......................
Scanning PCI BUS 10 ....................
Scanning PCI BUS 20 ....................
Scanning PCI BUS 28 +...................
Scanning PCI BUS 40 ....................
Scanning PCI BUS 50 ....................
Scanning PCI BUS 60 ....................
Scanning PCI BUS 80 ....................
Scanning PCI BUS 90 ....................
Scanning PCI BUS A0 ....................
Scanning PCI BUS C0 +...................
Scanning PCI BUS D0 ....................
Scanning PCI BUS E0 ....................
Initialize_genesis - Ver bld1: <<pci 2.1601>>
FRI, JAN 18, 2002, 11:24:51 AM (y/n)?
Initialize_genesis = Ready to configure I/O
[CDM]8 8 0 18
Initialize genesis completed.
Create Console Messages kso completed.
Initialize memory manager completed.
System Startup Functions
Starting the System

Initialize resident kernel completed.
Initialize volume management and mount the System Disk
Initialize volume management completed.
Opening the native system library completed.
Initialize loader completed.
I/O boot path managers frozen in memory completed.
Vsm make no longer resident completed.
Initialize process management completed.
Initialize debug subsystem completed.
Initialize file system completed.
Initialize temporary UID/GID Databases completed.
Initialize non-resident services completed.
Begin binding compatibility mode SL
Compatibility mode SL binding complete
Create port process has been completed.

The following is a list of the boot options -

last boot command: START           last configuration group: CONFIG
current boot command: START        current configuration group: CONFIG
Last configuration group actually used by START: CONFIG
logon = OPERATOR.SYS
RECOVERY                        MULTI-USER
MULTI-DISK                      SYSSTART

Begin launching additional processors:

No additional processors found: 1 total processor.

Entering - System I/O configuration.
The path 0/0/1/0.8.0 was configured but is not available.
The path 0/0/1/0.9.0 was configured but is not available.
higher component configuration failed.0/0/4/0.0
The path 0/12/0/0.2.0 was configured but is not available.
The path 0/12/0/1.2.0 was configured but is not available.
The path 0/2/0/1.2.0 was configured but is not available.
The path 0/4/0/0.2.0 was configured but is not available.
The path 0/4/0/1.2.0 was configured but is not available.
Leaving - System I/O configuration.

**SYSTEM I/O AT BOOT TIME**

| ldev: | 1   | HPC2490WD configured available 0/0/2/0.6.0 |
| ldev: | 6   | HP5000/F100 configured not-available 0/0/1/0.8.0 |
| ldev: | 7   | HPC1537A configured not-available 0/12/0/0.2.0 |
| ldev: | 8   | HPC1537A configured not-available 0/12/0/1.2.0 |
| ldev: | 10  | HP7978A configured not-available 0/0/1/0.9.0 |
| ldev: | 19  | HP2688A configured not-available 0/0/1/0.10.0 |
| ldev: | 20  | configured available |
| ldev: | 31  | HPC1537A configured not-available 0/2/0/1.2.0 |
| ldev: | 32  | HPC1537A configured not-available 0/4/0/0.2.0 |
| ldev: | 33  | HPC1537A configured not-available 0/4/0/1.2.0 |

MEMORY AVAILABLE FOR USE (bytes): 2147483648

Entering - Mount all volumes

Mounting MASTER on LDEV 1

USERLOG RECOVERY COMPLETED for MPEXL_SYSTEM_VOLUME_SET

NO PARALLEL PROCESSES FOR MOUNT_ALL_VOLUMES

-- Time spent in MOUNT_ALL_VOLUMES -> 0

Leaving - Mount all volumes

The current boot command has been saved on the system master.

NMLG FILE NUMBER 83 ON.

11:26/22/DCC STARTUP - ENTER - version C0500001 compiled 000612

11:26/22/ WARNING: I/O config from last START NORECOVERY will be used. (DCCW 0)

[LAN_DUMP_SURR] Version A.00.70.000, PIN: #30
[PSI_DUMP_SURR] Version A.00.70.000, PIN: #n 3
[PBT_DUMP_SURR] Version A.00.70.066, PIN: #32
[ACC_DUMP_SURR] Version A.00.70.003, PIN: #33

System State: Initializing Mode.

Reply Information Table has been initialized!

System State: Multiuser Mode.

11:26/1/Spooling of initially spooled devices is complete.

11:26/1/Set-up of Spooling Subsystem is complete.

11:26/37/The system has finished rebuilding the output spoolfile directory.
System Startup Functions

Starting the System

SYSTEM LOG FILE #84 IS ON

Initializing Job & Session
SESSION Scheduling Initialized
JOB Scheduling Initialized

Did not find a keyword in the first record of the SYSSTART file.

Initiate Operator Log On

MPE/iX: Successfully launched diagnostic monitor process.
Successfully launched System UPS Monitor process.
STM system manager started

MPE/iX:
Updating the Operating System

This section provides general information on using the MPE/iX and initial system loader (ISL) commands, options, and utilities to update the operating system of a HP 3000 (Series 900).

CAUTION  Specific update and installation instructions are subject to change. This manual provides you with an overview of the procedures involved.

For more specific information on using MPE/iX and initial system loader (ISL) commands, options, and utilities to update your operating system for a particular new release, refer to the appropriate version of HP e3000 MPE/iX System Software Maintenance Manual. This manual is included with the software tapes for each new release and contains information specific for that release.

The ISL Utility

The ISL utility UPDATE is more commonly used than INSTALL. The UPDATE utility replaces the base system files on the system disk with those from a boot tape. Optionally, you can update the configuration data files in the group CONFIG.SYS.

Before any other files are restored, UPDATE verifies that the system disk is a valid main system disk. If not, UPDATE halts with an error message.

The UPDATE utility is primarily used to replace a current version of the operating system with another version, but you can also use the UPDATE utility to aid in recovering from a severe system failure.

If your system fails, you have many options to use to help recover your system. Use UPDATE as a recovery method only after doing the following:

• attempting a START RECOVERY
• attempting a START NORECOVERY
• ensuring the validity of your START procedure
• ensuring that your hardware, hardware code, and current software are functioning properly

CAUTION  Do not attempt to use UPDATE to restore your system without reading the Backdating Your System Appendix in HP e3000 MPE/iX System Software Maintenance Manual.

Scheduling a System Update

If you are using the UPDATE facility as a recovery method, the opportunity to schedule your system’s UPDATE is probably not available to you. Take time to thoroughly examine the
UPDATE process before using it as a recovery method. Understanding the UPDATE process can reduce system operator and system manager errors and, therefore, reduce your system’s downtime.

If you are using the UPDATE utility to replace a current version of the operating system with a newer version, schedule the update for off-peak hours. The update procedure can take up to four hours, depending on the system and the number of subsystem products you have purchased. To reduce the time involved in ensuring the integrity of your backups, schedule the UPDATE immediately after a full system backup.

Using the UPDATE Utility and Options

The command to invoke the UPDATE utility is UPDATE. The utility has two initial options, CONFIG/NOCONFIG and START/NOSTART, with additional options if START is selected:

UPDATE[ ;CONFIG [ ;START
 ;NOCONFIG] ] ;NOSTART ] [options]

where options are: [ ;LOGON=acct] [GROUP=cgn] [ ;SINGLE-DISC [ ;SINGLE-USER
 ;MULTI-DISC ] ] ;MULTI-USER ]]

[ ;SYSSTART
 ;NOSYSSTART ] ]

- The CONFIG/NOCONFIG option allows you to indicate whether you wish to replace the configuration files in the group CONFIG.SYS on disk with any that may exist in the group CONFIG.SYS on the tape. (The CONFIG.SYS group on a factory tape is empty; however, a customer-generated tape may contain configuration data.)

- The START/NOSTART option allows you to choose whether or not to autoboot once the update is complete. If you specify START as an option, or accept it as the default, the remaining START options become available.

Refer to Table 3-4, for more information on the START options available for an update. Enter the options in any order, and separate them from the command and other options by a blank or semicolon.

Entering the command UPDATE without listing any options

ISL> UPDATE

is the same as specifying the following default options:

ISL> UPDATE NOCONFIG START GROUP=CONFIG LOGON=&

OPERATOR.SYS MULTI-DISC MULTI-USER SYSSTART

The UPDATE utility with its default options instructs the system to perform these tasks:

- update the existing operating system without replacing the configuration data files on disk
- autoboot the system from disk after the update is completed
- use the configuration group CONFIG.SYS
• attempt to log on in the user account OPERATOR.SYS (if there is no OPERATOR.SYS user, you will see the MPE prompt)
• bring up all volumes present on the system.
• allow access to all mounted volumes by all users
• execute the commands in the system startup file, SYSSTART.PUB.SYS, if it is present

Restarting of jobs is not permitted after either an UPDATE or an INSTALL, because no jobs exist after an UPDATE or an INSTALL.

Updating the Operating System: a Preview

NOTE Each customer installation or update is somewhat different. Examine the processes described for areas you may need to customize to fit your system. The following Hewlett-Packard publications will prove useful for updating your system:

• HP e3000 MPE/iX System Software Maintenance Manual
• MPE/iX Commands Reference Manual
• Configuring Systems for Terminals, Printers, and Other Serial Devices
• HP e3000/iX Network Planning and Configuration Guide

Booting the system to MPE/iX using the UPDATE utility may involve preliminary steps depending upon the particulars of your system and its usage.

Some of the preliminary steps are listed below:

1. backing up system data
2. limiting system use
3. deactivating network services
4. renaming any system files you wish to maintain
5. reserving adequate disk space

Once you are ready to begin the operating system update, the following are required steps of the process:

6. updating from the system load tape
7. restoring the FOS tape
8. restoring the SUBSYS tape
9. creating a customized system load tape
10. updating with the customized system load tape
11. returning to normal operation
System Startup Functions

Updating the Operating System

Updating the System Configuration: a Preview

If you are updating just the configuration of your system and not the operating system, then you have already created the customized SLT, as in step 9 above. You did this when you made your configuration changes in SYSGEN and did a `KEEP`. This information was transferred to the CSLT at the end of the update process. The following steps are a subset of an operating system update:

1. backing up system data
2. limiting system use
3. deactivating network services
4. renaming any system files you wish to maintain
   Once you are ready to begin the configuration update, the following are required steps of the process:
5. updating with the customized system load tape
6. returning to normal operation

Updating to Recover from System Failure: a Preview

If your system fails, you have many options to use to help recover your system. Use the `UPDATE` utility as a recovery method only after doing the following:

1. attempting a START RECOVERY
2. attempting a START NORECOVERY
3. ensuring the validity of your START procedure
4. ensuring your hardware, hardware code, and current software are functioning properly
5. reserving adequate disk space
   Once you are ready to begin the recovery update, the following are required steps of the process. These steps are a subset of an operating system update.
6. updating with the customized system load tape
7. restoring the backup tapes
8. returning to normal operation

CAUTION
Do not attempt to use `UPDATE` to restore your system without reading the Backdating Your System Appendix in HP e3000 MPE/IX System Software Maintenance Manual.

Backing up the System and Retaining the Current Configuration

Before updating your system, ensure that you have complete backup tapes. If up-to-date backups do not exist, reschedule the update. The backups provide a method of restoring your data if difficulties arise during the update.
You should also retain a hard copy of your system's current configuration. If you use the CONFIG option with UPDATE, UPDATE replaces the configuration files in the group CONFIG.SYS on disk with any that may exist in the CONFIG.SYS on the system load tape (SLT). If you use this option, you can unintentionally replace your system's current configuration files with the ones that UPDATE provides. In the event of an unintended replacement, if you have a listing of your current configuration, you can easily regenerate your system's current configuration.

Use SYSGEN to generate current configuration listings. For information on using SYSGEN, refer to Chapter 4, “Using the System Generator (SYSGEN).”

The above information has provided you with an overview of the update process. If you are planning to update your system, please follow the instructions in the HP e3000 MPE/iX System Software Maintenance Manual which came with the system tapes.
System Startup Functions

Installing the Operating System

This section provides a general overview on using operating system and initial system loader (ISL) commands, options, and utilities to install the operating system of a HP 3000 (Series 900) system.

CAUTION

Specific update and installation instructions are subject to change. This section provides you with an overview of the procedures involved. Do not use these instructions to update your system.

For specific information on using operating system and initial system loader (ISL) commands, options, and utilities to install your operating system using new factory release tapes, refer to the appropriate version of HP e3000 MPE/iX System Software Maintenance Manual. This manual is included with the software tapes for each new release and contains information specific for that release.

The INSTALL utility replaces all files on the system disk with files from the boot tape. These files include the disk logical interface format (LIF) label and directory, the system volume label, the bad sector table, the disk free space map, the system directory (null directory), boot files, and all base system files.

The INSTALL utility builds a null system directory that contains the account SYS. The groups CONFIG, DIAG, MPEXL, and the default configuration groups are added by the INSTALL utility later.

Installing a new version of the operating system can be accomplished by the system manager, except where specially customized software is to be installed. In this case, installation requires a Hewlett-Packard Service Representative.

After completion, the default option (INSTALL START) boots the system from disk.

The INSTALL utility is primarily used to do a first-time installation of the MPE/iX operating system. If you are installing a new release, be sure to follow the exact directions provided in the HP e3000 MPE/iX System Software Maintenance Manual.

The INSTALL utility can also be used to replace current versions of the operating system, boot files, and base system files. Finally, the INSTALL utility can be used as a last resort in system recovery to reload the software.

This section begins with a description of using the INSTALL utility to recover a lost system. The remaining sections provide information on doing a first-time installation or a reinstallation when the system was previously in use.

Using the INSTALL Utility to Recover a Lost System

If your system fails, you have many options to use to help recover your system. Use the INSTALL utility as a recovery method only after doing the following:

• attempting a START RECOVERY
• attempting a **START NORECOVERY**
• ensuring the validity of your **START** procedure
• ensuring that your hardware and hardware code, and current software are functioning properly
• attempting an update

In the event of a major system failure caused by corrupted files or other possible causes, you can use the **INSTALL** utility to reload your system. In this procedure, the system is recovered through the use of backup tapes. You use a system load tape created as part of your system backup procedure. Alternately, you may instead use the SLT that the **AUTOINST** program created when the system was last installed or updated.

---

**NOTE**  
*Do not* use these instructions to install your system. They are an overview only, and not a complete listing of tasks. Please refer to the HP e3000 MPE/iX System Software Maintenance Manual for full instructions on installing the system.

The following is an overview of the steps to perform:

1. Install from the backup or **AUTOINST**-created SLT and start the system.
2. Use **VOLUTIL** to initialize additional system volumes (if any).
3. Restore the latest partial and full backup tapes.
4. Shut down the system with the **SHUTDOWN** command, and reboot the system with **START NORECOVERY**.

The reinstallation process is now complete.

**Scheduling an INSTALL**

If you are using the **INSTALL** utility as a recovery method, the opportunity to schedule your system's installation is probably not available to you. Take time to thoroughly examine the **INSTALL** process before using it as a recovery method. Understanding the **INSTALL** process can reduce system operator and system manager error and, therefore, reduce your system's downtime.

Normal operating system replacement should be scheduled for off-peak hours. The **INSTALL** procedure can take up to five hours, depending on your system and the number of subsystems you have purchased. Schedule the installation immediately after a full backup, if you are not doing a first-time installation.

**Using the INSTALL Utility and Options**

The command to invoke the **INSTALL** utility is **INSTALL**. The utility has one initial option, **START/NOSTART**, with additional options if **START** is selected.

```
INSTALL [{ ;START
;NOSTART }[options]]
```
where options are:  START [{;GROUP=cgn} [LOGON=acct]

[{{ ;SINGLE-DISC}
 ;MULTI-DISC }]

[{{ ;SINGLE-USER
 ;MULTI-USER }]

[{{ ;SYSSTART
 ;NOSYSSTART }]

To use INSTALL, enter the INSTALL command with or without START/NOSTART and its options. Separate options from the INSTALL command and other options with a space or semicolon.

Entering the command INSTALL at the ISL prompt without listing any options:

    ISL> INSTALL

is the same as specifying the following default options:

    ISL> INSTALL START GROUP=CONFIG LOGON=OPERATOR.&SYS MULTI-DISC MULTI-USER SYSSTART

The INSTALL process with its default options instructs the system to perform the following tasks if an autoboot file exists, the autoboot file is enabled, and the START option is specified:

- Install the operating system, and autoboot the system from disk after the installation is completed.
- Use the configuration group, CONFIG.SYS.
- Attempt to log on in the user account OPERATOR.SYS (if there is no OPERATOR.SYS user, you will see the MPE prompt)
- Bring up all volumes present on the system.
- Allow access to all mounted volumes by all users.
- Execute the commands in the system startup file, SYSSTART.PUB.SYS, if it is present.

Installing the Operating System: a Preview

Booting the system to MPE/iX by using the INSTALL utility may involve preliminary steps if your system has previously been in use. When installing a system for the first time, you do not need to be concerned with these preliminary steps discussed below.

Some of the preliminary steps include the following:

1. Backing up system data.
2. Removing users and jobs from the system.
3. Storing to tape any system files that you wish to maintain.

Once you are ready to begin the installation proper, the following are required steps of the process:

1. Installing from the system load tape.
2. Restoring the FOS tape.
3. Restoring the SUBSYS tape.
4. Creating a customized system load tape.
5. Updating with the customized system load tape.
6. Restoring user files, if any.
7. Starting system for normal operation.

NOTE Each customer installation is somewhat different. Examine the processes described for areas you may need to customize to fit your system. The following Hewlett-Packard publications will prove useful for updating your system:
• HP e3000 MPE/iX System Software Maintenance Manual
• MPE/iX Commands Reference Manual
• Configuring Systems for Terminals, Printers, and Other Serial Devices
• HP 3000/iX Network Planning and Configuration Guide

Back up the System and Retain the Current Configuration

If you are installing over an existing system, ensure that it has been thoroughly backed up. If up-to-date backups do not exist, reschedule the installation. The backups provide a method of restoring your data. Please refer to the HP e3000 MPE/iX System Software Maintenance Manual if you need additional information on backing up your system.

You should also retain a hard copy of your system’s current configuration. If you have a listing of your current configuration, you can easily regenerate your system’s current configuration, if necessary. A customer-generated tape may contain configuration data in the CONFIG.SYS group.

Use SYSGEN to modify the sample configuration file you used when you started the system from the disk. For information on using SYSGEN, refer to Chapter 4, “Using the System Generator (SYSGEN),” through Chapter 8, “Modifying System File Configurations.”

NOTE Do not use these instructions to install your system. This information is only an overview. Please refer to the HP e3000 MPE/iX System Software Maintenance Manual for complete installation information.
Dumping System Memory and Secondary Storage

This section discusses using MPE/iX and initial system loader commands, options, and utilities to dump system memory and secondary storage to tape.

What is the Function of the DUMP Utility?

The DUMP utility saves the current state of the system’s main memory and secondary storage to tape for later analysis. Perform a memory dump after a system failure or hang, for a recurring system problem, or when the system fails to boot properly. Have the tape analyzed by your Hewlett-Packard Representative or your Hewlett-Packard Response Center.

Using the DUMP Utility and Options

The DUMP utility has one basic option, SUBSET=ALL/MEMORY. Because START/NOSTART are also options, DUMP can use several START command options:

```
DUMP [SUBSET= { ALL [{ ;START MEMORY }] ;NOSTART } [options]]
```

Where options are:

```
[{ ;RECOVERY [{ ;SINGLE-DISC ;NORECOVERY }] ;MULTI-DISC }]

[{ ;SINGLE-USER [{ ;SYSSTART ;MULTI-USER }] ;NOSYSSTART }]
```

To perform a complete memory dump, enter the DUMP command. The SUBSET=ALL option is the default option and dumps both main and virtual memory. The SUBSET=MEMORY option is required to dump main memory contents only.

Issuing the command DUMP without any options

```
ISL> DUMP
```

is the same as specifying the following default options:

```
ISL> DUMP GROUP=CONFIG LOGON=OPERATOR.SYS MULTI-DISC &: MULTI-USER RECOVERY START SUBSET=ALL SYSSTART
```

The DUMP command and its default options instruct the system to perform the following tasks if an autoboot file exists, the autoboot file is enabled, and the START option is specified:

1. Dump all memory and disk-based system data to tape.
2. Boot the system from disk after the dump is completed.
3. Boot with the configuration group CONFIG.SYS.
4. Log on in the user OPERATOR.SYS. (If there is no OPERATOR.SYS user, you will see
the MPE prompt).
5. Allow access to all mounted volumes by all users.
6. Restart jobs that are intact.

**Entering the DUMP Utility and Starting the System**

A procedure for performing a dump and booting a system includes the following steps:

1. Mount a tape on the tape drive.
2. Soft reset the system using the access port method, boot from the primary path, and enter the `DUMP` command at the ISL prompt.

**NOTE**
If you have a 99X system, you must transfer to the service processor before you can soft reset the system.

**CAUTION**
Do not issue the `RS` command from the console or push the RESET button on the front panel. Hard resetting the system initiates a destructive processor self-test that invalidates dump data.

**CAUTION**
There will be a one- to two-second delay between typing `TC` and getting the message `Processor Dependent Code (PDC) revision X.X.`. During this time no keys should be pressed on the console.

The system prompts for a user identification string and for the correct date and time shortly after receiving the `DUMP` command. The user can enter up to 80 characters, which can later be displayed by DAT when analyzing the dump. There is a 60-second timeout on this prompt. Once a key is pushed on the console keyboard, the timeout is aborted and a carriage return is required to continue with the dump. If a key is not pushed within 60 seconds, the prompt times out, and the dump proceeds with a blank user dump ID in the label. If the date or the time are incorrect, respond as requested with the correct date and time in 24-hour format.

**NOTE**
The DUMP procedure shown in Example 3-7 was performed on an N-Class system. The procedure assumes that autoboot is enabled. Make necessary adjustments to the procedure if autoboot is disabled on your system. Sequences from other installations may vary.

**Example 3-7. Dumping the System**

GSP> tc
TC

Execution of this command irrecoverably halts all system processing and
I/O activity and restarts the computer system.

Type Y to confirm your intention to restart the system: (Y/[N])  y
y
-> SPU hardware was successfully reset.

GSP Host Name: csyre118(csysas18)
GSP>
********** VIRTUAL FRONT PANEL **********
System Boot detected
******************************************************************************
LEDs:  RUN       ATTENTION       FAULT       REMOTE       POWER
       ON       FLASH       OFF       ON       ON
platform          config            626F
processor        test              1142
processor        test              1100
...memory      config             7280
I/O             test              8107
I/O             test              8107
processor      test              1142
platform       test              612A
I/O           config             8238

******************************************************************************

************** EARLY BOOT VFP **************
End of early boot detected
******************************************************************************

Firmware Version  21.32
Duplex Console IO Dependent Code (IODC) revision 1

<table>
<thead>
<tr>
<th>Processor Number</th>
<th>Speed</th>
<th>State</th>
<th>CoProcessor State</th>
<th>Cache Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>540 MHz</td>
<td>Active</td>
<td>Functional</td>
<td>512 KB 1 MB</td>
</tr>
<tr>
<td>3</td>
<td>Unknown</td>
<td>Stopped:Deconfigured</td>
<td>Unknown</td>
<td>512 KB 1 MB</td>
</tr>
</tbody>
</table>

Central Bus Speed (in MHz) : 133
Available Memory : 2097152 KB
Good Memory Required : Not initialized. Defaults to 32 MB.

Primary boot path: 0/0/2/0.6
Alternate boot path: 0/0/1/0.6
Console path: 0/0/4/0.0
Keyboard path: 0/0/4/0.0

---- Main Menu --------------------------------------------------------------

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0ot [PRI</td>
<td>ALT]&lt;path&gt;</td>
</tr>
<tr>
<td>PAth [PRI</td>
<td>ALT] [&lt;path&gt;]</td>
</tr>
<tr>
<td>SEArch [DIsplay</td>
<td>IPL] [&lt;path&gt;]</td>
</tr>
<tr>
<td>COnfiguration menu</td>
<td>Displays or sets boot values</td>
</tr>
</tbody>
</table>
Dumping System Memory and Secondary Storage

INformation menu                  Displays hardware information
SERvice menu                      Displays service commands

DIplay                           Redisplay the current menu
HELP [<menu>|<command>]          Display help for menu or command
RESET                            Restart the system

Main Menu: Enter command or menu > bo
Interact with IPL (Y, N, or Cancel)? > y

Booting...
Boot IO Dependent Code (IODC) revision 1

SOFT Booted.
MMSAVE Version 2.5
DUMPAREA found, save main memory to disc
ISL loaded

ISL Revision A.00.43  Apr 12, 2000
ISL> dump
MPE/iX launch facility

Scanning PCI BUS 0  ++*..++.........................
Scanning PCI BUS 8  .......................
Scanning PCI BUS 10  *............................
Scanning PCI BUS 20  *............................
Scanning PCI BUS 28  +............................
Scanning PCI BUS 40  .......................
Scanning PCI BUS 50  .......................
Scanning PCI BUS 60  *............................
Scanning PCI BUS 80  .......................
Scanning PCI BUS 90  .......................
Scanning PCI BUS A0  .......................
Scanning PCI BUS C0  +.......................
Scanning PCI BUS D0  .......................
Scanning PCI BUS E0  .......................

Chapter 3
MPE/XL Dump Version A.05.16 - initialization
A subset main memory and system volume set dump was requested.

Enter user identification string for this dump (80 chars or less):

Initialize_genesis - Ver bld1: <<pci 2.1601>>
FRI, JAN 18, 2002, 5:03:40 PM (y/n)?
Initialize_genesis = Ready to configure I/O
[CDM]8 8 0 18
Initialize memory manager completed.

MPE/XL Dump Facility Version A.05.16

Performing dump to tape.
adding permanent file to dump
adding permanent file to dump
Determine pre-compression size of secondary storage for ldev1
99 Megabytes of transient objects will be dumped for this device
Tape compression enabled.
6250 BPI not supported on this tape drive
1600 BPI density set on tape drive
tape is ready

Begin dump of Processor Internal Memory.
Processor Internal Memory dump complete.

Begin dump of main memory.
177 Megabytes of main memory will be dumped
.................................................................
Dump of memory save area complete.
.................................................................

.................................................................

Main memory dump complete.

Begin dump of secondary storage for ldev1
adding permanent file to dump
adding permanent file to dump
99 Megabytes of transient objects will be dumped for this device
...............................................................................
.......................
Secondary storage dump for ldev1 complete.

Dump completed - autoboost in progress.

ISL>

CAUTION If your system has failed with a HPMC it is recommended that a system reset (RS command) be executed prior to restarting the system.

3. Start the system. Enter the START command at the ISL prompt

   ISL> START

   and any desired options.

   Examples 3-5 and 3-6 and Appendix B, “Startup, Dump, and Shutdown Listings,” list the messages received at the console during a START.

ISL Summary

There are various options available with each utility, as shown below. These options may be entered in any order and must be separated by a blank or a semicolon. Keywords must be entered as shown.

START [;GROUP= cgn] [;LOGON= acct] [{ ;RECOVERY
               ;NORECOVERY }]

[{ ;SINGLE-DISC    [{ ;SINGLE-USER
              ;MULTI-DISC  }] ;MULTI-USER  }]

[{ ;SYSSTART
              ;NOSYSSTART }]

When the START option of the UPDATE utility is selected, the remaining options are available.

UPDATE [{ ;CONFIG    [{ ;START;
              ;NOCONFIG }] ;NOSTART } [options] ]

where options are: [{;LOGON=acct}[GROUP=cgn]
When the START option of the INSTALL utility is selected, the remaining options are available.

```
INSTALL [{ ;START ;NOSTART } [options]]
```

where options are: [{ ;GROUP= cgn }][LOGON=acct]

When the START option of the DUMP utility is selected, the remaining options are available.

```
DUMP [SUBSET= { ALL [{ ;START MEMORY }] ;NOSTART }[options]]
```

Where options are:

```
[{ ;RECOVERY [{ ;SINGLE-DISC ;NORECOVERY }] ;MULTI-DISC }]
[{ ;SINGLE-USER [{ ;SYSSTART ;MULTI-USER }] ;NOSYSSTART }]
```

All available options are defined in Table 3-3..

**Table 3-3. Utility Options**

<table>
<thead>
<tr>
<th>Options</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIG or NOCONFIG</td>
<td>During an UPDATE, this option specifies whether or not the configuration data files on disk (CONFIG group), are replaced by those on tape (CONFIG). If this option is not specified, the default is NOCONFIG</td>
</tr>
<tr>
<td>Default: NOCONFIG</td>
<td></td>
</tr>
<tr>
<td>GROUP=null</td>
<td>When the system is booted with NORECOVERY, the group specified after GROUP= is the source of configuration information. When performing an UPDATE, INSTALL, or DUMP, this group is only in effect if START is specified or defaulted. When a START command is entered, the group specified (or defaulted) for it overrides any previous specification. Since configuration groups reside in the SYS account, you do not specify the account name.</td>
</tr>
<tr>
<td>Default: GROUP=CONFIG</td>
<td></td>
</tr>
</tbody>
</table>
### Table 3-3. Utility Options

<table>
<thead>
<tr>
<th>Options</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOGON= accountname Default: LOGON= OPERATOR.SYS</td>
<td>The logon account contains a standard logon. When the system is booted, the account specified after LOGON= is used to initiate a session. When SINGLE-USER has been specified, the account specified in LOGON= is used as the single user. If LOGON= is not specified on the command line, the logon defaults to OPERATOR.SYS (if the OPERATOR.SYS user has been created).</td>
</tr>
<tr>
<td>RECOVERY or NORECOVERY Default: RECOVERY (except with START after INSTALL or UPDATE)</td>
<td>During a START or an autoboot after a DUMP, this option indicates whether or not restartable jobs are restarted. On DUMP, this option is in effect only if START is specified or defaulted. If this option is not specified, the default is RECOVERY. Note on an INSTALL or UPDATE, jobs cannot be restarted, and the next START defaults to NORECOVERY. Use NORECOVERY if the system configuration has changed. If RECOVERY is specified and the system configuration has changed, the system recovers restartable jobs by using the previous system configuration and ignores the new system configuration and any GROUP= specification.</td>
</tr>
<tr>
<td>SINGLE-DISC or MULTI-DISC (Primarily Used for Diagnostics) Default: MULTI-DISC</td>
<td>This option determines whether or not the system initiates with all of the volumes mounted (MULTI-DISC) or only the system master volume mounted (SINGLE-DISC). If neither is specified, MULTI-DISC is the default. SINGLE-DISC can be specified only if SINGLE-USER has also been selected. If the SINGLE-DISC option is selected with MULTI-USER, the system issues a warning message and changes the SINGLE-DISC option to MULTI-DISC. If the START parameter is not specified or defaulted on an INSTALL, UPDATE, or DUMP, the SINGLE-DISC parameter is ignored.</td>
</tr>
<tr>
<td>SINGLE-USER or MULTI-USER (Primarily Used for Diagnostics) Default: MULTI-USER</td>
<td>This option boots the system with either single user capability or with multiuser capability and all configured terminals available. MULTI-USER is the default. SINGLE-USER is used primarily for diagnostic support. For the INSTALL, UPDATE, and DUMP utilities, the SINGLE-USER/MULTI-USER option is available only if START is specified or defaulted as an option.</td>
</tr>
<tr>
<td>START or NOSTART Default: START</td>
<td>This option instructs UPDATE, INSTALL, or DUMP whether or not to autoboot (START) after the utility has completed its job. If neither START nor NOSTART is specified, START is the default.</td>
</tr>
<tr>
<td>SUBSET = ALL or SUBSET = MEMORY Default: SUBSET = ALL</td>
<td>During a dump, this option indicates whether the contents of main memory alone or main memory and secondary storage is dumped to tape for later analysis. If the subset is not specified, it defaults to ALL (main memory and secondary storage).</td>
</tr>
<tr>
<td>SYSSTART or NOSYSSTART Default: SYSSTART</td>
<td>On an INSTALL, UPDATE, START, or DUMP, this option determines whether or not the system startup file is used during the current boot. If neither SYSSTART nor NOSYSSTART is selected, SYSSTART (using the system startup file) is the default. If the START parameter is not specified or defaulted on an INSTALL, UPDATE, or DUMP, this parameter is ignored.</td>
</tr>
</tbody>
</table>
Table 3-4. summarizes system startup utilities with their more commonly used options.

Table 3-4. Summary of System Startup Function

<table>
<thead>
<tr>
<th>MPE/iX Utility</th>
<th>MPE/iX Function (When To Use)</th>
<th>Spool file Recovery</th>
<th>Permanent User Files</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>START or START RECOVERY</strong></td>
<td>Starts system from disk. If <strong>RECOVERY</strong> is used immediately after changing system configuration, the system recovers restartable jobs by using the previous system configuration and ignores the new system configuration.</td>
<td>Yes</td>
<td>Retained</td>
</tr>
<tr>
<td><strong>START NORECOVERY</strong></td>
<td>Starts system from disk. Use after changing system configuration. Use to recover from system hang or failure.</td>
<td>Yes output only</td>
<td>Retained</td>
</tr>
<tr>
<td><strong>UPDATE or UPDATE NOCONFIG</strong></td>
<td>Boots system from the SLT. Replaces system files on disk with those from SLT. System uses configuration files from disk. Use to update current version of operating system while maintaining current configuration. Use to recover from system hang or failure.</td>
<td>Yes output only</td>
<td>Retained</td>
</tr>
<tr>
<td><strong>UPDATE CONFIG</strong></td>
<td>Boots system from the SLT. Replaces system files with those on the SLT. Replaces the configuration files on disk (in the group CONFIG.SYS) with those from the SLT.</td>
<td>Yes output only</td>
<td>Retained</td>
</tr>
<tr>
<td><strong>INSTALL or INSTALL START</strong></td>
<td>Boots system from SLT. Replaces all system boot files and base system files on the system volume (LDEV 1) with the information on the SLT. Replaces configuration files with SLT defaults. Autoboots system after completing install. Use to install a version of the operating system or to recover from a disk crash or severe system failure.</td>
<td>No</td>
<td>Lost from system disks. User files remain on nonsystem volumes.</td>
</tr>
<tr>
<td><strong>INSTALL NOSTART</strong></td>
<td>Performs similarly to INSTALL or INSTALL START, but INSTALL NOSTART does not attempt to start the system after completing the install.</td>
<td>No</td>
<td>Lost from system disks. User files remain on nonsystem volumes.</td>
</tr>
<tr>
<td><strong>DUMP</strong></td>
<td>Boots system from disk. Stores current state of system main memory and optionally secondary memory to tape for later analysis. Use to analyze causes of system failure.</td>
<td>Yes output only</td>
<td>Retained</td>
</tr>
</tbody>
</table>
4 Using the System Generator (SYSGEN)

SYSGEN is a utility used to modify the system configuration. System configuration changes are kept to disk in a configuration group or to a tape called a system load tape (SLT). The SYSGEN utility requires system supervisor (OP) capability to view system configuration and system manager (SM) capability to save changes or create an SLT.

SYSGEN contains a global module and four configurators:

- **Input/Output (IO) Configurator.** Configures the local devices for the target system.
- **Logging (LOG) Configurator.** Changes the attributes of the user logging and system logging processes.
- **Miscellaneous (MISC) Configurator.** Focuses on system limits and startup values, especially those related to jobs, sessions, and processes.
- **System File (SYSFILE) Configurator.** Changes the list of files dumped to an SLT.

Each configurator provides an interface to make changes to an independent portion of the configuration data and offers a menu of commands and online syntax help. Command names and abbreviations are easily identified. For example, the command to add a device is `ADEV` (abbreviated `AD`), while the command to delete a device is `DDEV` (abbreviated `DD`).

The configurators operate on information contained in the base configuration group. This basegroup is the group used to begin making changes to the system configuration. The basegroup includes a permanent set of configuration files that contain information on device classes, assigned I/O paths, assigned logical device (LDEV) numbers, current volume names, and various other system parameters.

Activating SYSGEN creates a set of temporary configuration files that correspond to the permanent file set specified with the `BASEGROUP` command. Configuration changes are made to the temporary configuration files. Once the changes are complete, the system manager uses the `KEEP` command to overwrite the permanent file set with the temporary file set or to save the temporary files to another permanent file set.

When `KEEP` is used to save changes to a new group name, SYSGEN stores the modified base group files in a group in the `SYS` account. The changes take effect once the system is rebooted with `START NORECOVERY`.

SYSGEN also provides a `CLEAR` command to erase changes made through one or more of the configurators.

---

**NOTE**

When SYSGEN generates a boot tape, it writes the current configuration data as the group `CONFIG.SYS`, regardless of the group name on disk. `CONFIG` is the group selected by default by the `START` utility and used to start a system. For more information on the `START` utility, refer to Chapter 3, “System Startup Functions.”
Entering the SYSGEN Global Module

The command for the SYSGEN utility is SYSGEN. SYSGEN has four positional parameters:

```
SYSGEN [basegroup]
 [,newgroup]
 [,inputfile]
 [,outputfile]
```

The `basegroup` parameter specifies the group in the SYS account that contains the configuration data file set to be used or changed. The default base group is the group used to boot the system (usually CONFIG). The default base group is the group specified in the initial system load (ISL) START command line. (For information on specifying configuration groups during START, refer to Chapter 3, “System Startup Functions.”)

If you attempt to specify a nonexistent group using the `BASEGROUP` command, SYSGEN issues the following message:

```
error group groupname does not exist
```

The `newgroup` parameter specifies the group used to store data. If you do not specify `newgroup`, SYSGEN stores any configuration changes in the base group by default.

If the group specified by `newgroup` already exists, SYSGEN asks, at keep time, whether or not it should overwrite that group with new information. At keep time, if the user does a `KEEP` with no parameters, SYSGEN keeps the current base group unless `newgroup` was specified, in which case the group given is used. More information on using the KEEP command is provided later in this chapter.

The `inputfile` parameter specifies the file designator of the file for command input. The formal file designator is SYSGIN. The default is $STDINX.

The `outputfile` parameter specifies the file designator of the file for SYSGEN output. The formal file designator is SYSGOUT. The default is $STDLIST.

When using parameters with the SYSGEN command, place them immediately following the command:

```
:SYSGEN[basegroup][,newgroup][,inputfile]
 [,outputfile]
```

When using parameters with RUN SYSGEN.PUB.SYS, you must specify them in the phrase `INFO=" "`:

```
RUN SYSGEN.PUB.SYS;INFO="
" [basegroup][,newgroup]&

 [,inputfile][,outputfile]"
```

Example 4-1 illustrates activating SYSGEN’s global module. Activate the SYSGEN global module by entering the command SYSGEN or by entering RUN SYSGEN.PUB.SYS.

**Example 4-1. Activating SYSGEN’s Global Module**
SYSGEN

SYSGEN version C.02.05 : catalog version C.02.05 FRI, MAY 20, 1990
Copyright 1987 Hewlett-Packard Co. All Rights Reserved

** First level command **

    io                log (lo)       misc (mi)
    spu (sp)          sysfile (sy)
    basegroup (ba)    keep (ke)      permyes (pe)
    show (sh)         tape (ta)
    clear (cl)(c)     exit (ex)(e)   help (he)(h)
    oclose (oc)       redo

sysgen>
Using the Help Facility in SYSGEN’s Global Module

The help facility provides a list of the commands available at each functional level of SYSGEN. In addition, help provides the syntax of an individual command or the syntax of each command in the configurator or at the first-level menu.

To obtain a list of the first-level commands, enter `HELP` (abbreviated `HE` or `H`) at the SYSGEN prompt as shown in the following example.

**Example 4-2. SYSGEN’s Global Module Help Facility**

```bash
sysgen>HELP

** First level command **

`` io`` log (lo)`` misc (mi)

`` spu (sp)`` sysfile (sy)

`` basegroup (ba)`` keep (ke)`` permyes (pe)

`` show (sh)`` tape (ta)

`` clear (cl)(c)`` exit (ex)(e)`` help (he)(h)

`` oc10se (oc)`` redo

sysgen>
```

To display the syntax for each available command at the current level, enter `HELP ALL` as shown in the following example:

**Example 4-3. SYSGEN Global Module HELP ALL**

```bash
sysgen>HELP ALL

command (abb) parameter=value
----------- -----------
`` io`` misc (mi)

`` log (lo)`` spu (sp)

`` sysfile (sy)`` basegroup (ba) [name = groupname]

`` keep (ke) (k) [name = groupname]`` show (sh) [type = BASEGROUP|NEWGROUP|VERSION|PERMYES|CONFIGURATOR|ALL]

`` [dest = OFFLINE]`` permyes (pe) [mode = ON|OFF]

`` tape (ta) [mode = VERBOSE|NOCHANGE|NOCONFIG|NODIAG|NOLOGNUM|LOGNUM]

`` [dest = OFFLINE]
```

sysgen>
```
** Common configurator commands **

- clear (cl)(c)
- exit (ex)(e)
- help (he)(h) [command = ALL | command-name]
- hold (ho)
- oclose (oc)
- redo

sysgen>

To display a listing of the syntax for a first-level command, enter HELP commandname as shown in the following example:

sysgen>HELP BASEGROUP

basegroup (ba) [name=groupname]
Using First-Level (Global Module) Commands

The first-level commands, displayed after entering SYSGEN, allow you to activate one of the four configurators (I/O, LOG, MISC, SYSFILE) or to keep, show, or clear changes made from the configurators. In addition, you can use first-level commands to call the SYSGEN help facility, alter basegroups, store configuration changes to tape, or exit the SYSGEN utility. Table 4-1 describes the commands and their actions:

Table 4-1. Using First-Level Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO</td>
<td>Activates the I/O Configurator. For additional information on the IO command, refer to “Entering the I/O Configurator.”</td>
</tr>
<tr>
<td>LOG or LO</td>
<td>Provides access to the LOG configurator commands.</td>
</tr>
<tr>
<td>MISC or MI</td>
<td>Provides access to the MISC configurator commands.</td>
</tr>
<tr>
<td>SPU or SP</td>
<td>Provides access to the SPU configurator commands</td>
</tr>
<tr>
<td>SYSFILE or SY</td>
<td>Provides access to the SYSFILE configurator commands.</td>
</tr>
<tr>
<td>BASEGROUP or BA</td>
<td>Changes the default group after the utility is activated. Previous changes, if any, are lost. The configuration begins anew.</td>
</tr>
<tr>
<td>KEEP or KE or K</td>
<td>Saves configuration changes that were made in the configurators and temporarily stored with the HOLD command.</td>
</tr>
<tr>
<td>PERMYES or PE</td>
<td>Controls SYSGEN’s interactive confirmation for potentially serious action, such as an EXIT before a KEEP.</td>
</tr>
<tr>
<td>SHOW or SH</td>
<td>Shows the state of individual configurators, combined configurators, or all configurators.</td>
</tr>
<tr>
<td>TAPE or TA</td>
<td>Generates a boot tape. All configuration changes made are reflected on the tape.</td>
</tr>
<tr>
<td>CLEAR or CL or C</td>
<td>Clears all changes made from all configurators.</td>
</tr>
<tr>
<td>EXIT or EX or E</td>
<td>Exits the global module and returns to the operating system prompt.</td>
</tr>
<tr>
<td>HELP or HE or H</td>
<td>Displays the list of commands, the individual command syntax, or the syntax of all the first level commands.</td>
</tr>
<tr>
<td>OCLOSE or OC</td>
<td>Closes the offline listing file, SYSGLIST.</td>
</tr>
<tr>
<td>REDO</td>
<td>Used for making corrections. Follows the command interpreter REDO conventions.</td>
</tr>
<tr>
<td>command</td>
<td>Allows you to enter various MPE/iX command interpreter commands.</td>
</tr>
</tbody>
</table>
SYSGEN Command Syntax

Commands can be classified as either command only or command with parameters(s). Commands with parameters can be specified in one of the following ways:

- positional parameters
- keyword parameters
- options

NOTE

The command structure established by SYSGEN enables the user to select the manner in which parameters accompany the command.

Positional parameters are assigned a position in the parameter sequence. Separate parameters by semicolons or blanks, or exclude them by using consecutive semicolons. Enclose subparameters and repeated parameters in parentheses, and separate them by commas or blanks.

A subparameter can be either strings or numeric values separated by blanks or commas. Enclose them in parentheses if more than one is present. Always specify subparameters by fixed position within the subparameter list. You can omit subparameters by entering consecutive commas.

A repeated parameter is a single parameter value that can be repeated an arbitrary number of times. Separate parameters by commas or blanks, and enclose them in parentheses () if more than one is present.

Halting SYSGEN Command Actions

Entering CTRL Y stops listings or cancels partially entered SYSGEN commands. Issue CTRL Y at any point in SYSGEN. SYSGEN terminates the current action and returns its prompt. If you enter CTRL Y while SYSGEN is generating a boot tape, you have the option of terminating or continuing the tape generation process.

CTRL Y is effective if the SYSGEN output and input has not been redirected and if SYSGEN is being run from a session.

Specifying the Base Group

When altering or viewing a configuration through SYSGEN, you must first select the configuration group for the operation. Select this basegroup by using the basegroup parameter or the BASEGROUP command.
You can specify the group only from the global module in SYSGEN, but you can accomplish this in two ways. You can use the `basegroup` optional parameter in the `SYSGEN` command line:

```
:SYSGEN[basegroup][,newgroup][,inputfile][,outputfile]
```

Also, you can enter the SYSGEN global module and use the first-level command `BASEGROUP`:

```
sysgen>BASEGROUP  groupname
```

The syntax for the `BASEGROUP` command (abbreviated `BA`) is:

```
BASEGROUP [ [NAME=] groupname]
```

The `groupname` parameter is a string of up to eight characters. For example, to use `BASEGROUP`, enter the command and its parameter as shown:

```
sysgen>BASEGROUP  CONFG935
```

or

```
sysgen>BA  MYCONFIG
```

`BA` switches you to a different configuration group. (List configuration information through the `LIST` and `SHOW` commands of the various configurators.)

If you specify a nonexistent group, SYSGEN issues an error message:

```
sysgen>BASEGROUP  FEUDAL
```

```
**error** group "FEUDAL" does not exist
```

```
sysgen>
```

Confirming Potentially Seriously Serious Actions

SYSGEN is initially set to confirm a potentially serious action. If, for example, you make configuration changes and attempt to exit without saving the changes, SYSGEN warns you that you are about to lose your changes.

You can enable `PERMYES` to automatically accept all decisions entered at the terminal or disable it to ask if the user wishes to change a command that seems improper. The abbreviated command for `PERMYES` is `PE`. This command is particularly useful when SYSGEN receives input commands from a file or batch job.

If `PERMYES` is `OFF` (the default), SYSGEN prompts you for a YES/NO response whenever a potentially serious action, such as exiting SYSGEN without saving configuration changes, is initiated. If you respond negatively, the action does not take place and the command is ignored. If `PERMYES` is `ON`, you are not prompted for confirmation. SYSGEN executes the command exactly as entered.

To enable `PERMYES`, enter `PERMYES ON` at the SYSGEN prompt:
sysgen> \textbf{PERMYES ON}

To disable \texttt{PERMYES}, enter \texttt{PERMYES OFF} at the SYSGEN prompt:

sysgen> \textbf{PERMYES OFF}

Once \texttt{PERMYES} is disabled, SYSGEN issues messages to prompt for confirmation. Example 4-4 demonstrates \texttt{PERMYES OFF} action.

\begin{itemize}
\item \textbf{NOTE} PERMYES should always be set ON in command files to allow SYSGEN to continue where confirmation would be requested.
\end{itemize}

\textbf{Example 4-4. PERMYES OFF Action}

:SYSGEN

SYSGEN version D.01.01 : catalog version D.01.01 TUE, SEP 14, 1993
Copyright 1987 Hewlett-Packard Co. All Rights Reserved

** First level command **

\begin{verbatim}
io log (lo) misc (mi) spu (sp)
sysfile (sy)
basegroup (ba) keep (ke) permyes (pe) show (sh)
tape (ta)
clear (cl)(c) exit (ex)(e) help (he)(h) oclose (oc)
redo
\end{verbatim}

sysgen>

sysgen> \textbf{PERMYES OFF}

sysgen> \textbf{SYSFILE}

** SYSFILE configurator commands **

\begin{verbatim}
aauto (aa) aboot (ab) acmsl (ac) asprog (as)
cmsl (cm) dauto (da) dboot (db) dcmsl (dc)
dsprog (ds) lcmsl (cl) rauto (ra) rboot (rb)
rcat (rc) rcmsl (rcm) rdcc (rd) ripl (ri)
rnmlib (rn) rsprog (rs) show (sh)

clear (cl)(c) exit (ex)(e) help (he)(h) hold (ho)
\end{verbatim}

sysfile>

sysfile> \textbf{ASPROG FCOPY.PUB.SYS FCOPY.PUB.SYS} ** Add FCOPY to SYSGEN tape **

sysfile> \textbf{E} *** Exit without saving ***

configuration changes are not kept yet!
still want to exit (yes/no) ? NO

sysfile>

Example 4-5 shows how SYSGEN overrides user input with \texttt{PERMYES enabled}.
Example 4-5. PERMYES ON Action

SYSGEN

SYSGEN version D.01.01 : catalog version D.01.01 TUE, SEP 14, 1993
Copyright 1987 Hewlett-Packard Co. All Rights Reserved

** First level command **

io log (lo) misc (mi) spu (sp)
sysfile (sy)

basegroup (ba) keep (ke) permyes (pe) show (sh)
tape (ta)

clear (cl)(c) exit (ex)(e) help (he)(h) oclose (oc)
redo

sysgen>

sysgen>PERMYES ON

sysgen>SYSGFILE

** SYSFILE configurator commands **

aauto (aa) aboot (ab) acmsl (ac) asprog (as)
cmsl (cm) dauto (da) dboot (db) dcmsl (dc)
dsprog (ds) lcmsl (cl) rauto (ra) rboot (rb)
rcat (rc) rcmsl (rcm) rdcc (rd) ripl (ri)
rnmlib (rn) rsprog (rs) show (sh)

clear (cl)(c) exit (ex)(e) help (he)(h) hold (ho)

sysfile>

sysfile>ASPROG FCOPY.PUB.SYS FCOPY.PUB.SYS ** Add
FCOPY to SYSGEN tape **
sysfile>E *** Exit without saving ***

configuration changes are not kept yet!
still want to exit (yes/no) ?Automatic yes

sysgen>

Enabling PERMYES saves time and effort by answering YES to all prompting, particularly when a command input file is used or a batch job is executed. Enabling PERMYES can also allow mistakes. In the previous example, the changes are not kept because the HOLD command was not entered, and the system automatically answered YES to the (YES/NO) exit confirmation.
Showing the State of Configurators

The SHOW command (abbreviated SH) displays the current state of the SYSGEN global facilities.

SHOW has the following syntax:

```
SHOW [TYPE = BASEGROUP ]
       [ NEWGROUP ]
       [ VERSION ]
       [ PERMYES ]
       [ CONFIGURATOR ]
       [ ALL ]
       [DEST = OFFLINE ]
```

BASEGROUP lists the name of the current working configuration’s base group.

NEWGROUP lists the name of the current new configuration group.

VERSION displays the version number of SYSGEN. The version number is also displayed in the SYSGEN banner.

PERMYES shows whether SYSGEN prompts you for confirmation before performing potentially serious commands.

CONFIGURATOR lists all modified configurators.

ALL provides a combined listing of the configuration information provided by the TYPE parameters defined above.

OFFLINE sends output to SYSGEN’s listing file, SYSGLIST. Using OFFLINE in the SHOW command line does not immediately generate a printout. The information is sent to SYSGLIST until you either enter the OCLOSE command or exit SYSGEN. Exiting SYSGEN or using OCLOSE closes SYSGLIST and prints the file.

Entering SHOW without TYPE parameters is the same as specifying SHOW ALL. Example 4-6 demonstrates using the SHOW ALL command.

Example 4-6. Using the Global Module SHOW ALL

```
sysgen>SHOW ALL
base configuration group = CONFIG
new configuration group =
SYSGEN version D.01.01 : catalog version D.01.01
permyes is false--system will have to answer
questions
** no configurators are modified**
```
Activating the Configurators

The commands for entering each of the configurators (IO, LOG, MISC, SYSFILE) are SYSGEN first-level commands. To activate the configurators, you must first enter the SYSGEN Global module.

Once you have the SYSGEN prompt, enter either IO, LOG, MISC, or SYSFILE to activate the Input/Output, Logging, Miscellaneous, or System File configurators, respectively. Example 4-7 demonstrates activating a configurator:

Example 4-7. Activating a SYSGEN Configurator

:SYSGEN

SYSGEN version D.01.01 : catalog version D.01.00 TUE, SEP 14, 1993
Copyright 1987 Hewlett-Packard Co. All Rights Reserved.

** First level command **
io log (lo) misc (mi) spu (sp)
sysfile (sy)

basegroup (ba) keep (ke) permyes (pe) show (sh)
tape (ta)
clear (cl)(c) exit (ex)(e) help (he)(h) oclose (oc)
redo
sysgen>
sysgen>IO

** IO configurator commands **
aclass (ac) adev (ad) apath (ap) avol (av)
dclass (dc) ddev (dd) dpath (dp) dvol (dv)
lclass (lc) ldev (ld) lpath (lp) lvol (lv)
maddress (ma) mclass (mc) mdev (md) mpath (mp)
mvol (mv)
clear (cl)(c) exit (ex)(e) help (he)(h) hold (ho)
oclose (oc) redo
io>

For information on a particular configurator, refer to the chapter that discusses the configurator.
Clearing Configuration Changes

The SYSGEN global module **CLEAR** command (abbreviated **CL**) removes all temporary changes made from the four configurators. If, for example, you make IO and SYSFILE configurator changes and decide not to keep them, issue the global module **CLEAR** command to remove the changes made in both configurators.

To clear all temporary changes made from the IO, LOG, MISC, and SYSFILE configurators, enter **CLEAR** at the SYSGEN prompt:

```
sysgen> CLEAR
```

Saving Configuration Changes

Saving configuration changes is a two-step process. After making the changes in any of the configurators, you must hold those changes before exiting the configurator to continue your work.

Use the **HOLD** command to temporarily hold the changes made in a configurator. Holding changes allows you to move among configurators or between a configurator and the global module without losing changes.

Refer to the sections on the IO, LOG, MISC, or SYSFILE configurators for information on using **HOLD** within each configurator.

The **KEEP** command (abbreviated **KE** or **K**) saves (stores to disk files) changes held from any of the SYSGEN configurators.

KEEP has the syntax:

```
KEEP     [ [NAME=] groupname ]
```

Groupname may be eight characters or fewer and must begin with an alphabetic character.

SYSGEN keeps track of the current configuration group, whether it is the default group with which you booted the system, a group specified by the *basegroup* parameter on the initial SYSGEN command line, or a group switched to by the **BASEGROUP** global configurator command. If you do not specify a basegroup with the **KEEP** command and did not specify a group with the *newgroup* parameter on the initial SYSGEN command line, SYSGEN uses the current working base group (either the default or the one set by a method listed above) to save the configuration changes.

The **KEEP** command can be used to save configuration changes to a group other than the current working group. In addition, if the desired group does not already exist, the **KEEP** command creates it and then saves the configuration changes to it. All groups are saved in the *SYS* account.

To keep changes to a group other than the current working configuration group, enter the **KEEP** command and a new group name:
Generating a System Load Tape

The `TAPE` command (abbreviated `TA`) generates an SLT from system configuration information. The configuration is written to the `CONFIG` group of the `SYS` account on the tape.

TAPE has the following syntax:

```
TAPE { [MODE = ] ][VERBOSE
              NOCHANGE
              NOCONFIG
              NODIAG
              NOLOGNUM
              LOGNUM ] } [DEST = OFFLINE ]
{ [STORE = ]"filesetliststring"}
```

`VERBOSE` prompts the `TAPE` command to list the number of nonuser files to be dumped and lists the name of each file as it is dumped to the boot tape.

By default, SYSGEN changes SYSFILE configurations as they are dumped to tape, so source name equals the destination name.

`NOCHANGE` prevents SYSGEN from changing the names in the SYSFILE configurator as it makes the boot tape.

`NOCONFIG` prevents SYSGEN from dumping the current configuration files as it makes the tape.

`NODIAG` prevents SYSGEN from dumping the diagnostic files as it makes the tape.

NOTE

Using this parameter creates a tape that does not contain a complete system. Installing from this tape may not produce a bootable system.

If changes are being saved to a group that has existing configuration files, SYSGEN asks if that group should be overwritten:

```
sysgen>KEEP NEWCONFIG    (Sample name only)
```

If insufficient space exists on the main system disk to accommodate the creation of a new configuration group, SYSGEN issues a message indicating this. SYSGEN then terminates, losing the temporary files and the changes.

configuration files not saved

Answering NO cancels the command.
NOLOGNUM resets the system and datacom log numbers to zero (0).

LOGNUM is the default. It specifies that SYSGEN should carry forward the system and datacom log numbers and not reset to zero (0).

OFFLINE directs the listing created by VERBOSE to SYSGEN’s listing file, SYSGLIST.

Using OFFLINE in the TAPE command line does not immediately generate a printout. The information is sent to SYSGLIST until you enter the global module OCLOSE command or exit SYSGEN. Exiting SYSGEN or using OCLOSE closes SYSGLIST and prints the file.

STORE allows the user files that are specified in the file set list to be stored after the SLT. (The filesetliststring parameter is the same as the parameter specified with the STORE utility.)

All configuration changes made are reflected on the tape. (The temporary changes remain valid after SYSGEN has generated a tape.) Tapes created by the TAPE command do not contain the system file directory.

NOTE SYSGEN detects all system-independent errors; however, due to SYSGEN’s lack of knowledge of the physical attributes of a target system, system-dependent errors cannot be detected when a system load tape is generated.

To generate a system load tape (SLT), perform the following tasks:

1. Log on to the console as MANAGER.SYS. Enter:

 :HELLO MANAGER[/userpass].SYS[/acctpass]

 NOTE If the user has system supervisor (OP) capability, but not system manager (SM) capability, an SLT can still be made; however no configuration changes can be made. Follow steps 2, 3, 10, and 11.

2. Activate SYSGEN and access the configuration group that you want to store on the boot tape. Enter:

 Example 4-8. Accessing a Configuration Group

 :SYSGEN groupname

 SYSGEN version D.01.01 : catalog version D.01.00 TUE, SEP 14, 1993
 Copyright 1987 Hewlett-Packard Co. All Rights Reserved.

 ** First level command **

 io log (lo) misc (mi)
 spu (sp)
 sysfile (sy)
 basegroup (ba) keep (ke) permyes (pe)
Generating a System Load Tape

3. Make any desired changes from the IO, LOG, or MISC configurators.

 Refer to Chapter 5, “Modifying Input/Output (I/O) Configurations,” and Chapter 7, “Modifying Miscellaneous Configuration Elements,” for information on using the IO, LOG, and MISC configurators to alter the system configuration.

4. After completing any changes, but before exiting a configurator, enter:

 HOLD

 The HOLD command saves changes (to a temporary file) made in the configurator at the time that the HOLD is issued.

5. Decide which files to dump to tape.

 SYSGEN allows you to choose which files to store to a boot tape. You may store autoboot images, boot images, and system programs.

 The SYSFILE configurator provides the utilities and commands that alter boot tape contents. For information on the commands available for adjusting boot tape contents, refer to Chapter 8, “Modifying System File Configurations.”

 After completing any changes, but before exiting the configurator, enter:

 sysfile>HOLD

7. Exit the SYSFILE configurator. Enter:

 sysfile>EXIT

8. Issue the KEEP command to store all changes to a set of permanent disk files by entering:

 sysgen>KEEP groupname

9. Mount a write-enabled tape on the tape drive.

 When you mount the tape on the tape drive, the system issues a message similar to the following:

 10:15/10/Vol (unlabeled) mounted on LDEV# 7

10. Generate the tape.

 • To create only a system load tape (SLT), enter the following command:

 sysgen>TAPE

 This is a tape containing the operating system and specified configuration information.
• To create a system load tape with user files stored after it, enter the following command:

```bash
sysgen>TAPE STORE="filesetlist"
```

You can list the user files that you wish to store as input to the `STORE=` parameter. Note that the string of file names to be stored after the SLT must be enclosed in quotes. You can also use the wildcard @ to include all users files on the system (@@@), in specific accounts (@@SYS, @@AR), and in specific groups of accounts (@PUB.SYS, @CURRENT.AR).

The system responds by issuing a message similar to the following:

```bash
?10:15/#92/46/LDEV# FOR "SYSGTAPE" ON TAPE (NUM)
```

Respond to the tape request to start the `STORE` when the system issues the above message. When the store is complete, the system issues a message indicating that it has completed the tape:

```bash
**Boot tape is successfully built**
```

11. After all the files are stored, unload the tape and write-protect it. Label the tape and store it in a secure location with other backup materials.
Redirecting SYSGEN Input and Output

By using SYSGEN’s file designators, you can redirect SYSGEN’s input and output. Redirecting SYSGEN’s input and output enables you, for example, to issue commands to SYSGEN using command files that can operate without user intervention or interactive keyboard input.

SYSGEN uses three formal file designators for input, output, and listing:

- **SYSGIN.** The formal file designator for the standard SYSGEN input file. By default, this file is set to $STDINX.
- **SYSGOUT.** The formal file designator for the standard SYSGEN output file. By default, this file is set to $STDLIST.
- **SYSGLIST.** The formal file designator for the standard SYSGEN listing file. By default, this file is set to any device in the class LP.

$STDINX and $STDLIST are the file names for the terminal from which SYSGEN is run. The device in class LP is your system printer.

Redirect SYSGEN input and output by using the `FILE` command and equating some other files to SYSGIN, SYSGOUT, and SYSGLIST, or by using the `INFO` parameter and options in the SYSGEN command line.

For example, the commands `FILE SYSGIN=NEWIN` and `SYSGEN,,NEWIN` accomplish the same task. When SYSGEN is activated, they utilize NEWIN as the input file. Likewise, the commands `FILE SYSGOUT=NEWOUT` and `SYSGEN,,,NEWOUT` equate NEWOUT to the formal file designator, SYSGOUT, so SYSGEN utilizes NEWOUT as the output file.

With redirection you can use a command input file to complete common routines that you perform frequently. Example 4-9 lists a three-line job stream (named SYSGENON) which, when run using the `STREAM` command, logs on to the system, enters SYSGEN, and executes the SYSGEN command file (LISTIT) in Example 4-10.

Refer to MPE/iX Commands Reference Manual for information on the `STREAM` command.

Example 4-9. Command File (SYSGENON) Created With EDITOR

```
1     !JOB SYSGENON,MANAGER/userpass.SYS/acctpass,groupname
2     !SYSGEN,,LISTIT
3     !EOJ
```

Table 4-2. explains the actions performed by each line of the preceding command file.

<table>
<thead>
<tr>
<th>Line</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Log on to the file SYSGENON as MANAGER.SYS with all accompanying system manager capabilities.</td>
</tr>
</tbody>
</table>
Table 4-2. Actions Performed by Command File Example

<table>
<thead>
<tr>
<th>Line</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Activate SYSGEN and redirect input so that SYSGEN uses the file named LISTIT as the input file.</td>
</tr>
<tr>
<td>3</td>
<td>End the job file after SYSGEN has completed the tasks outlined by the SYSGEN command file LISTIT.</td>
</tr>
</tbody>
</table>

Example 4-10 lists the contents of the command file (LISTIT), which, when run, prints SYSGEN information on the system printer.

Example 4-10. SYSGEN Command File (LISTIT)

```
1     PERMYES ON
2     IO
3     LDEV DEST=OFFLINE
4     LPATH DEST=OFFLINE
5     LCLASS DEST=OFFLINE
6     OCLOSE
7     EXIT
8     EXIT
```

Table 4-3. explains the actions performed by the lines of the command file example.

Table 4-3. Actions Performed by Command File LISTIT

<table>
<thead>
<tr>
<th>Line</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Set PERMYES ON. Recommended for all command files.</td>
</tr>
<tr>
<td>2</td>
<td>Activate the IO configurator.</td>
</tr>
<tr>
<td>3</td>
<td>Send the characteristics of configured I/O devices to the listing file SYSGLIST.</td>
</tr>
<tr>
<td>4</td>
<td>Send the characteristics of configured I/O paths to the listing file.</td>
</tr>
<tr>
<td>5</td>
<td>Send the class name, class mode, and devices associated with each class to the listing file.</td>
</tr>
<tr>
<td>6</td>
<td>Close (print) the listing file.</td>
</tr>
<tr>
<td>7</td>
<td>Exit the IO configurator.</td>
</tr>
<tr>
<td>8</td>
<td>Exit SYSGEN.</td>
</tr>
</tbody>
</table>

When using SYSGEN in a noninteractive mode (such as a batch job or a command file), certain conditions may occur that cause SYSGEN to ask for confirmation. For example, if a KEEP is attempted on top of an already existing configuration group, SYSGEN asks for confirmation. If no configuration exists, no questions are asked.

When you set up the input to SYSGEN you may not know if the question will be asked. To ensure the operation’s success, set PERMYES ON at the beginning of any set of noninteractive commands as shown in step 1 above.
Exiting SYSGEN

Use the `EXIT` command (abbreviated `EX` or `E`) to exit from a configurator and return to the SYSGEN global module, or to terminate SYSGEN and return to the MPE prompt.

To exit either a configurator or SYSGEN, enter `EXIT` at the prompt:

```
log>EXIT

sysgen>

or

sysgen>EXIT

:
```

Note that the MPE prompt returns after SYSGEN ends.
5 Modifying Input/Output (I/O) Configurations

With the introduction of version C.55.00 of MPE/iX, there are two ways to define input and output devices on a system: using SYSGEN’s I/O Configurator or using the IOCONFIG utility. Both methods provide information about the input and output devices configured on a system and let you make changes to the configuration as necessary. The key difference is that using IOCONFIG changes the configuration while the system remains online, whereas to activate configuration changes made with SYSGEN, you must issue a separate command (DOIONOW) after making the changes, or reboot the system with the START NORECOVERY option, or generate a new System Load Tape to update this (or another) system.

SYSGEN’s I/O configurator and the IOCONFIG utility configure the local devices of the system only. Remote devices, such as terminals on a distributed terminal subsystem and remote serial printers, are configured through the network management configurator.

This chapter begins with a general discussion of I/O paths and then explains how to configure devices using SYSGEN and the IOCONFIG utility. For additional information, read Chapter 3 of the Performing System Manager Tasks manual.
I/O Paths

An I/O path is the system address assigned to the device interface hardware and the physical path used to reach an I/O device.

I/O Paths Used to Boot a System

When a system is powered on or reset, the processor-dependent code (PDC) and I/O-dependent code (IODC) hardware routines read and initialize the I/O paths used to boot or reboot the system. The I/O paths that are used to load the system from disk or tape are referred to as boot paths. They consist of:

- the primary boot path, for booting from disk
- the alternate boot path, for booting from a tape
- the console boot path, which determines whether or not the console can boot itself (“autoboot”) without operator intervention

Each device configured for the boot path has been assigned a unique LDEV number which identifies a physical device associated with a system. Two of the boot paths, the primary boot path and the console boot path, require a specific LDEV. The system master volume must be mounted on LDEV 1 for the operating system to be booted from disk and LDEV 20 must be assigned to the system console.

At system installation, these devices are assigned a default boot path, which the system manager may redirect either through the system initialization prompts or the initial system load (ISL) interface. For more information on system initialization and ISL, refer to Chapter 3, “System Startup Functions,” in this manual.

Selecting I/O Paths

An I/O path is determined by the bus converter (S) module number, the device adapter (DA) slot number, and the device address.

Using the SYSGEN I/O Configurator

To view and modify the I/O configuration from within SYSGEN, you use the I/O configurator module. To do so, start SYSGEN and enter \texttt{IO} at the SYSGEN prompt. SYSGEN displays the commands available to you. To issue a command, you can enter either the full command name or the abbreviation shown in parentheses in Example 5-1.

Example 5-1. Starting the I/O Configurator

\begin{verbatim}
:SYSGEN
sysgen>IO

** I/O configurator commands **
\end{verbatim}
Getting Help with I/O Configurator Commands

The help facility enables you to identify quickly the function and syntax of those I/O configurator commands and options required to perform the multiple operations that define or change device-dependent information.

To see a list of the commands available for use in the I/O configurator and their abbreviations, enter HELP at the I/O configurator prompt. To display the syntax for each available command at the current level, enter HELP ALL, as shown in Example 5-2.

Example 5-2. I/O Configurator HELP ALL Command Output

```
io>HELP ALL

  command (abb)   parameter=value
        -----------         ---------------
aclass (ac)      class      = name
                 ldev       = #/#,#,...
                 [mode      = IN|OUT|CIO|NCIO|RANDOM|
                   DEFAULT]

adev (ad)       ldev       = #/#,#,...
                 [path       = devicepath]
                 id         = productid
                 [rsize     = recordsize]
                 [outdev    = outputdevice]
                 [mode      = JOB|DATA|INTERACTIVE|DUPLICATIVE|
                   INPUT|OUTPUT|AUTOREPLY|NLIO|NONE]
                 [class     = classname,...|NONE]
                 [cmode     = IN|OUT|CIO|NCIO|RANDOM|
                   DEFAULT]
                 [pmgr      = physicalmanagername]
                 [lmgr      = logicalmanagername]
                 [pmgrpri   = physicalmanagerpriority]
                 [mpetype   = compmodetype]
                 [mpesubtype= compmodesubtype]
                 [devname   = devicename]
```
Modifying Input/Output (I/O) Configurations

Using the SYSGEN I/O Configurator

mpath (mp) path = devicepath
 [id = productid]
 [pmgr = managername]
 [lmgr = managername]
 [pmgrpri = managerpriority]
 [maxios = maxconcurrentchannel I/Os]

mvol (mv) vname = volumename
 [newname = newvolumename]
 [ldev = logicaldevice#]
 [transient = %ofdiscfortransientobjects]
 [permanent = %ofdiscforpermanentobjects]
 [vclass = volumeclass]

To view the syntax for a specific I/O configurator command, enter HELP commandname at the I/O configurator prompt. Refer to Example 5-3, to get information about the ADEV command, you would enter HELP ADEV.

Example 5-3. I/O Configurator Command HELP Output

io>HELP ADEV

ad (ad) ldev = #/#,#,...
 path = devicepath
 id = productid
 [rsize = recordsize]
 [outdev = outputdevice]
 [mode = JOB|DATA|INTERACTIVE|DUPLICATIVE|
 INPUT|OUTPUT|AUTOREPLY|NLIO|NONE]
 [class = classname,...|NONE]
 [cmode = IN|OUT|CIO|NCIO|RANDOM|
 DEFAULT]
 [pmgr = physicalmanagername]
 [lmgr = logicalmanagername]
 [pmgrpri = physicalmanager priority]
 [mpetype = compmodetype]
 [mpesubtype= compmodesubtype]
 [devname = devicename]

io>

Using I/O Configurator Commands

The I/O configurator commands let you list, modify, add, and delete four types of objects: classes, devices, paths, and volumes. You can also use the I/O configurator to modify addresses with the MADDRESS command. In addition to the specific functions, shown in Table 5-1., the I/O configurator includes the commands that are common to all SYSGEN configurators: CLEAR, EXIT, HELP, HOLD, and OCLOSE.

Table 5-1. I/O Configurator Command Matrix

<table>
<thead>
<tr>
<th></th>
<th>List</th>
<th>Modify</th>
<th>Add</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>LCLASS</td>
<td>MCLASS</td>
<td>ACLASS</td>
<td>DCLASS</td>
</tr>
</tbody>
</table>
Chapter 5

Modifying Input/Output (I/O) Configurations

Using the SYSGEN I/O Configurator

Table 5-1. I/O Configurator Command Matrix

<table>
<thead>
<tr>
<th></th>
<th>List</th>
<th>Modify</th>
<th>Add</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>LDEV</td>
<td>MDEV</td>
<td>ADEV</td>
<td>DDEV</td>
</tr>
<tr>
<td>Path</td>
<td>LPATH</td>
<td>MPATH</td>
<td>APATH</td>
<td>DPATH</td>
</tr>
<tr>
<td>Volume</td>
<td>LVOL</td>
<td>MVOL</td>
<td>AVOL</td>
<td>DVOL</td>
</tr>
<tr>
<td>Address</td>
<td>MADDRESS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Viewing the Current Configuration

To get information about the current configuration, either displayed on screen or printed, using the LCLASS, LDEV, LPATH, and LVOL commands as described in Table 5-2.

Table 5-2. I/O Configurator List Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
</table>
| LCLASS | Lists the class name or names you specify with the command, the class modes, and the devices associated with the classes in the I/O configuration. A class name is an identifier to which numerous devices can be assigned. Unlike LDEV numbers, device class names are not unique to each device. For example, all of your system's printers could be assigned the class name LP. (LP, which stands for "line printer," is a common device class name.) For more information, refer to the Controlling System Activity. It provides detailed information about device class names, their modes of operation, and how they are assigned in the system. | LCLASS DISC
LCLASS (DISC,LP) |
| LDEV | Lists the attributes of the specified logical device or devices. If you omit the LDEV number, all of the I/O devices and their characteristics are listed. Each configured logical device (LDEV) has a uniquely assigned LDEV number which identifies a physical device associated with a system. | LDEV CLASS= (LP, EPOC)
LDEV (4/9,11/14) |
| LPATH | Lists information about the adapters and I/O devices on a specified path level. You can list a specific path, list paths a specific level, or list all paths associated with an I/O manager. | LPATH PAT=4
LPATH, 1
LPATH MANAGER=CIPER_DM |
You can use the `OFFLINE` option to send the output of the listing commands, `LCLASS`, `LDEV`, `LPATH` or `LVOL`, to the file `SYSGLIST`. Using `OFFLINE` does not immediately generate printed output. The information is sent to `SYSGLIST` until you either enter the `OCLOSE` command or exit SYSGEN. Exiting SYSGEN or using `OCLOSE` closes `SYSGLIST` and prints the file.

For example, to print information about all devices with device class `DISC` and `LP` on your system, do the following:

1. At the I/O Configurator prompt (>io) enter:

 `io> LCLASS (DISC,LP) DEST=OFFLINE`

 Or, you can enter the command this way:

 `io> LCLASS (DISC,LP) OFFLINE`

2. To close the file `SYSGLIST` and print the information, enter:

 `io> OCLOSE`

Sample Configuration Data

Example 5-4 shows the kind of information you might see if you entered the `LDEV` command, without additional parameters, at the I/O configurator prompt on an N-Class system.

Example 5-4. Listing Configured Devices: N-Class System

```
io> ld
LDEV:  1  DEVNAME:  OUTDEV:  0  MODE:  
   ID: ST39103LC  RSIZE:  128  DEVTYPE: DISC  
   PATH: 0/0/2/0.6.0  METYPE:  4  MPESUBTYPE:  2  
   CLASS: DISC SPOOL  

LDEV:  2  DEVNAME:  OUTDEV:  0  MODE:  
   ID: ST39103LC  RSIZE:  128  DEVTYPE: DISC  
   PATH: 0/0/2/1.6.0  METYPE:  4  MPESUBTYPE:  2  
   CLASS: DISC SPOOL  
```
Adding Objects in SYSGEN

When you use SYSGEN to add objects to the system configuration, there are four I/O Configurator commands available: ACLASS, ADEV, APATH and AVOL. They are defined in Table 5-3. For more detailed information read Performing System Manager Tasks.

Table 5-3. I/O Configurator Add Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
</table>
| ACLASS | Creates a new class name and associates devices to the new class. You use the ACLASS command to add a class name designation to a device that is already configured with the ADEV command. You also specify the mode with this command, which can be one of JOB (accepts jobs and sessions), IN (input only), OUT (output only), CIO (concurrent I/O), NCIO (nonconcurrent I/O), RANDOM (direct-access device such as a disk), and DEFAULT (a mode assigned when the system is initialized). | ACLASS EPOC 19
ACLASS PLATES 31/34
MODE=RANDOM |
Using the SYSGEN I/O Configurator

Table 5-3. I/O Configurator Add Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
</table>
| ADEV | Adds a device to an existing I/O path that is configured to the device adapter level. At a minimum, you must specify the LDEV, the path, and ID number, but you may also specify the record size, an output device associated with the device, the device operation mode, the class, a class mode (other than the default assigned to the device), physical and logical device managers, the priority level of the physical device manager, the compatibility mode type and subtype, and a device name. | ADEV LDEV=30 PATH=4.5.9 ID=HP2688A
ADEV 8 PATH=2/4.2.1 ID=HP7978B RSIZE=132 |
| APATH | Defines the I/O path to an adapter, not to a device. (To add device level paths, you use the ADEV command.) If the path has already been defined, you will get an error. At a minimum, you must enter the path and an ID, which is either the Hewlett-Packard product number or a mnemonic name that designates different uses of the same product. You may also specify the physical and logical device managers, the execution priority of the physical device manager, and the maximum number of concurrent I/Os to expect. | APATH PATH=4.2 ID=HP27113A |
| AVOL | Adds a new volume to the system volume set configuration. You must specify a unique name you give to each volume member and its logical device number. In addition, you may also specify the volume class and the amounts of transient and permanent disk space allocated on the volume. | AVOL VNAME=MEMBER2 LDEV=4 VCLASS=PROD |

You use the NMMGR program to add non-local devices such as terminals, serial printers, UPS hardware and other objects to a system. To learn how to configure UPS devices, read “Introducing the UPS and UPS Monitor/iX Software” later in this chapter. To learn how to use NMMGR to configure other devices, read Configuring Systems for Terminals, Printers, and Other Serial Devices.

Changing Configurations in SYSGEN

When you use SYSGEN to change the system configuration, there are five I/O Configurator commands available: MADDRESS, MCLASS, MDEV, MPATH, and MVOL. They are defined in Table
5-4. and explained in the following sections.

Table 5-4. I/O Configurator Modify Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>MADDRESS</td>
<td>Modifies the I/O path from one that exists to a new path that does not already exist. You specify the old path and the new path, both of which must have the same number of levels.</td>
<td>MADDRESS 2/4.0.2 6/4.0.3</td>
</tr>
<tr>
<td>MCLASS</td>
<td>Changes I/O class information including the class mode, the class name, and the devices associated with the class.</td>
<td>MCLASS CLASS LP NEWCLASS=BIGPRN MODE=OUT MCLASS BONSAI SMALLPRN 28/29</td>
</tr>
<tr>
<td>MDEV</td>
<td>Changes the attributes of a configured device. You specify the LDEV number of the device you want to modify, then enter the new parameters. This commands changes the LDEV number itself, the device ID, the device path, class, mode, record size, physical and logical device manager, the compatibility mode type and subtype, and the device name.</td>
<td>MDEV 8 18 HP7978H 4.3.0 MODE=JOB</td>
</tr>
<tr>
<td>MPAT</td>
<td>Changes the attributes of an I/O path. You can modify the path name, the product ID, the physical and logical device managers, the execution priority of the physical device manager, and the maximum number of concurrent I/Os to expect.</td>
<td>MPATH 4.1 HP27113A MPATH 2/4.3 PMGR=HPIB_DAM</td>
</tr>
<tr>
<td>MVOL</td>
<td>Modifies the attributes of a volume set member. You can modify the volume name, volume class and the amounts of transient and permanent disk space allocated on the volume.</td>
<td>VOL VNAME=MEMBER2 TRANSIENT=30 PERMANENT=70</td>
</tr>
</tbody>
</table>
Deleting Objects in SYSGEN

When you use SYSGEN to delete objects from the system configuration, there are four I/O Configurator commands available to you: DCLASS, DDEV, DPATH, and DVOL. They are defined in Table 5-5, and explained in the following sections.

Table 5-5. I/O Configurator Delete Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCLASS</td>
<td>Removes one or more class names from the system. If the class does not exist, or if you attempt to delete the DISC, CONSOLE, or TAPE classes, SYSGEN displays an error message.</td>
<td>DCLASS EPOC DCLASS (EPOC, FASTLP)</td>
</tr>
<tr>
<td>DDEV</td>
<td>Removes a specific device, range of devices, all products of a given product identification, all devices of a given type, or all devices of a given class name. You cannot delete the system disk (LDEV 1) or the system console (LDEV 20).</td>
<td>DDEV LDEV=123 DDEV ID=HP2932A</td>
</tr>
<tr>
<td>DPATH</td>
<td>Deletes an I/O path and, optionally, all the I/O paths below it in the configuration. If there are I/O paths below the one you are deleting, SYSGEN prompts you to confirm the action before deleting them. If an I/O path is currently used by a configured device, SYSGEN issues an error and does not delete the path.</td>
<td>DPATH 4.2 PATH 2/8.2</td>
</tr>
<tr>
<td>DVOL</td>
<td>Deletes a volume member from the system configuration. To implement the change, you must create a system load tape with the new configuration and then use it to do an INSTALL.</td>
<td>DVOL MEMBER2</td>
</tr>
</tbody>
</table>

Changing the Configuration Online

A new command file, DOIONOW, has been added to MPE/iX which allows the system manager to immediately implement device configuration changes made with SYSGEN. This command allows you to keep the system online and available to users more of the time, and gives you the flexibility to change the configuration on an “as needed” basis.

To change the configuration while the system is online, do the following:

1. Make the necessary changes to the configuration with the I/O Configurator. (This process is no different than it was before; for more information, read the previous section of this chapter “Using SYSGEN’s I/O Configurator.”

2. Keep the configuration changes and exit SYSGEN. The information is saved in the file LOG4ONLN.PUB.SYS, which is used by the DOIONOW command.

3. At the CI prompt, execute the DOIONOW command by entering:

 :DOIONOW

4. DOIONOW passes the LOG4ONLN file, which contains the new configuration information, to IOCONFIG, which begins making the changes. If LOG4ONLN is not found, you will see the following error message displayed on the console:
NO PENDING SYSGEN CONFIG CHANGES

The **DOIONOW** command creates a log file, ONLNOLOG.PUB.SYS, which is used to record the commands executed by IOCONFIG. If the **DOIONOW** command generates an error, you may view this same log file to determine the cause. This log file is purged and a new one is created prior to invoking the new configuration, which means that it only contains information for the last execution of IOCONFIG. Once you have found the problem, you can then edit the input file for the **DOIONOW** command, LOG4ONLN.PUB.SYS, to avoid duplicating the events that created the error.
Using the IOCONFIG Utility

With the release of version C.55.00 of MPE/iX, system managers can now use a new utility, IOCONFIG, to change the I/O configuration and implement the changes immediately without rebooting the system.

The IOCONFIG utility automatically updates SYSGEN’s base configuration. IOCONFIG can completely replace the use of SYSGEN for device configuration, especially when you need to make configuration changes immediately; that is, without rebooting the system. However, you should continue to use SYSGEN to configure devices to have the changes take effect at the next reboot.

There is one occasion when you cannot use IOCONFIG in place of SYSGEN’s I/O Configurator: when the current base configuration group is BOOTUP. IOCONFIG cannot modify configuration files in the BOOTUP group, since these files are designed to maintain a backup copy of the configuration files used in the last successful START NORECOVERY which includes INSTALL and UPDATE. Therefore, when BOOTUP is the current base configuration group, you must use SYSGEN to make the configuration changes on the next START NORECOVERY.

NOTE
There is another new option for online device configuration introduced with Version C.55.00 of MPE/iX. The system manager can use the I/O Configurator in SYSGEN, and then issue the DOIONOW command to immediately begin making the changes online. This command is described earlier in this chapter.

You may use IOCONFIG in one of two ways: interactively or non-interactively which is sometimes called “command mode”.

To use IOCONFIG interactively, you issue the IOCONFIG command, without command parameters, at the CI prompt. This starts the IOCONFIG utility, at which point you may enter any of the commands shown in Table 5-6, at the special prompt. When you are through using IOCONFIG, you must explicitly exit the utility.
Modifying Input/Output (I/O) Configurations
Using the IOCONFIG Utility

To use IOCONFIG in command mode, you enter IOCONFIG followed by a single command passed as an INFO string at the CI prompt. For example, you might want to list the devices or device classes in the current configuration without executing any other command. To do so, you would enter:

: IOCONFIG "lc"

Device and device class configuration with the IOCONFIG utility is just like SYSGEN’s. You can list device and device class information, or add and delete a device or a device class. You can also modify an existing device class to add or delete devices in the class, or to rename the class. All commands take effect immediately. As a side-effect, those commands that update the configuration also update the current SYSGEN boot configuration.

Adding a Device with IOCONFIG

To configure a tape drive, disk or a system printer into the system, the system manager or operator uses the ADDDEVICE or ADEV command. The syntax of the command is identical to that of SYSGEN’s ADEV command in IO level, except that the ID parameter is optional. The command syntax is as follows:

Modifying Input/Output (I/O) Configurations

Using the IOCONFIG Utility

To configure a SCSI device, it must be physically connected to the specified path, it must be operational, and there must be a device-defaults-data entry for the product ID (which is obtained from the device during configuration). If you omit the ID parameter, the IOCONFIG utility interrogates the hardware to identify the device. It then validates the ID that it retrieves by checking it against the list of supported devices.

When adding a printer to the configuration that has the class SPOOL, the spooler process for that device will automatically be started and a message indicating this will appear on the console.

Listing One or More Devices with IOCONFIG

The system manager or operator can list all devices in the system or one or more specified devices along with their configuration information using the LISTDEVICE or LDEV command. When you enter either command without parameters, information about all devices currently configured in the system is listed. By providing one or more parameters as the selection criteria, you can see information about particular devices.

The command syntax is as follows:

```
LISTDEVICE {{LDEV}=#/#,#,...}
```

```latex
[ [MODE =] {JOB
DATA
INTERACTIVE
DUPLICATIVE
INPUT
OUTPUT
AUTOREPLY
NLIO
NONE       } ] [[CLASS =]classname]

[ [CMODE =] {IN
OUT
CIO
NCIO
RANDOM
DEFAULT}]

[[PMGR =] physicalmanagername]

[[LMGR =] logicalmanagername]

[[PMGRPRI =] physicalmanager priority]

[[MPETYPE =] compmodetype]

[[MPESUBTYPE =] compmodesubtype]

[[DEVNAME =] devicename]
```
Modifying Input/Output (I/O) Configurations

Using the IOCONFIG Utility

[[ID]=product number]
[[TYPE]=device type]
[[CLASS]=classname, ...]
[[DEST]=OFFLINE]

Deleting a Device with IOCONFIG

The system manager or operator may delete a device from the configuration using the DELETEDEVICE or DDEV command. A device is considered to be completely deconfigured when all its system-related resources are recovered. DDEV, at this time, can only deconfigure two kinds of devices completely: network printers and disks that are attached to single-ended SCSI adapters.

The syntax of the DDEV command is identical to that of SYSGEN’s DDEV command in IO level. The command syntax is as follows:

DELETEDEVICE {{LDEV =}#/#/#, ...}

[[ID =]deviceid]
[[TYPE =]devicetype]
[[CLASS =]classname]

Adding a Device Class with IOCONFIG

To create a new device class in the system, the system manager or operator uses the ADDCLASS or ACLASS command. The syntax of the ACLASS command is identical to that of ACLASS in SYSGEN. All devices that you designate as members of the class (using the LDEV parameter) must be configured before issuing this command.

NOTE

With the release of version C.55.00 of MPE/iX, the maximum number of devices that you can configure has substantially increased. When there is a large number of configured devices, you may notice a slight delay in system response as you add more. For example, when the number of devices configured exceeds approximately 2,000, the delay will be evident. It is not, however, indicative of a system problem.

The syntax of the ADDCLASS command is as follows:

ADDCLASS {{CLASS =}classname}{{LDEV =}#/#/#, ...}

[[MODE =]{IN
 OUT
 CIO
 NCIO

Chapter 5
Modifying a Device Class with IOCONFIG

The system manager or operator can modify a device class by adding or deleting one or more devices in it or by renaming it using the MODIFYCLASS or MCLASS command. The syntax of this command is identical to that of MCLASS in SYSGEN. The command syntax is as follows:

```
MODIFYCLASS { [CLASS]=classname }

[[NEWCLASS]=classname]

[[ALDEV]=logical device #,...]

[[DLDEV]=logical device #,...]

[[MODE =]{IN

OUT

CIO

NCIO

RANDOM

DEFAULT}}
```

Currently, the system allows any device in the system to belong to only one associated class at any time. For example, if a device X belongs to a class Y and Y is associated to some user, then the MODIFYCLASS command prevents you from adding X to another class Z which is also associated to any user at the time.

Listing One or More Device Classes with IOCONFIG

The system manager or operator can list all device classes in the system, or one or more specified device classes, with their configuration information using the LISTCLASS or LCLASS command. When no parameter is used with this command, all device classes currently configured in the system are listed. By providing the names of those device classes with the CLASS keyword, you can view information about particular device classes. The command syntax is as follows:

```
LISTCLASS [[CLASS]=classname,...]

[[DEST]= OFFLINE]
```

Deleting a Device Class with IOCONFIG

The system manager or operator can use the DELETECLASS or DCLASS command to delete a device class that is not currently associated to a user. To disassociate the device class from the user, the user must execute the DISASSOCIATE command at the Command Interpreter.
prompt.
The command syntax is as follows:

```
DELETECLASS { [CLASS =] classname,... }
```

Configuring a Device Adapter with IOCONFIG

It is often necessary to configure intermediate paths before a device can be configured into
the system. For example, you must configure a SCSI device adapter before the first device
on that SCSI bus can be configured. Intermediate path configuration is done just like in
SYSGEN. At this time, the command to delete a path is only supported for the
single-ended SCSI adapter. All other cases will fail with an error.

The command syntax is as follows:

```
ADDPATH { [PATH =] devicepath } { [ID =] productid }
{ [PMGR =] physicalmgrname }
{ [PMGRPRI =] physicalmgrpri }
{ [LMGR =] logicalmgrname }
{ [MAXIOS =] maxconcurrentchannelIOs }
```

Listing an I/O Path with IOCONFIG

An I/O path is the system address assigned to the device interface hardware and the
physical path used to reach an I/O device. The system manager or operator can use the
LISTPATH command to display information about adapters and I/O devices on a specified
path in the active configuration. The command lists the configured I/O paths according to
their paths or to their associated I/O manager. The syntax of the LISTPATH command
appears below:

```
LISTPATH [PATH= [path]
  LEVEL= [#]
  MANAGER= [manager name,...]
  DEST= [OFFLINE]
]
```

The LEVEL parameter lists I/O paths at the level you specify:
- Enter 1 to display channel adapter information
- Enter 2 to display device adapter information
- Enter 3 to display device information

The MANAGER parameter lists the I/O paths associated with the given manager or
managers, if the manager(s) exist. If not, IOCONFIG displays a warning message.

Use the DEST parameter to send LISTPATH output to the file IOCLIST. This file remains
open until you exit IOCONFIG, at which point the file is closed and printed.
Deleting an I/O Path with IOCONFIG

The system manager or operator can delete an I/O path and all paths below it from the configuration with the `DELETEPATH` command. IOCONFIG will only delete a path if it is not currently in use or if it does not have an associated device. If either is true when you issue the `DELETEPATH` command, a warning message appears.

The syntax of the command is:

```
DELETEPATH [PATH =] device path
```

Currently, the only paths that can be completely deleted are those using a single-ended SCSI adapter.

Updating the Device Class Association Table with IOCONFIG

Many of the configuration commands implicitly update one or more system reserved device classes. For example, the `ADEV` command when used to configure a tape device, implicitly adds the new device in `TAPE` device class. Also, these commands explicitly update one or more device classes specified with the command.

The device class association information used by the `ASSOCIATE` and `DISASSOCIATE` commands is stored in `ASOCIATE.PUB.SYS`. This file is built when the system manager runs the program `ASOCTBL.PUB.SYS`. Therefore, after you have issued `IOCONFIG` commands, it is a good idea to update the file `ASOCIATE.PUB.SYS` by running `ASOCTBL`.
6 Modifying Logging Configurations

The LOG configurator enables the system manager to change the attributes of user and system logging processes.

System logging records the use of certain system resources by accounts, groups, and users on a job or session basis. The system manager determines which events are logged.

User logging allows users and subsystems to record additions and modifications to databases and other files used in applications programs. The system manager determines the maximum number of logging processes and the maximum number of users per logging process.
Modifying Logging Configurations

Entering the LOG Configurator

To access the LOG configurator, enter the LOG command (abbreviated LO) at the SYSGEN prompt as shown in the Example 6-1:

Example 6-1. Activating the LOG Configurator

```plaintext
sysgen>LOG

** LOG configurator commands **

   show (sh)    slog (sl)    ulog (ul)
   clear (cl)(c)  exit (ex)(e)  help (he)(h)  hold (ho)
   oclose (oc)    redo

log>
```

Using the LOG Configurator Help Facility

The help facility enables you to quickly identify the function and syntax of those LOG configurator commands and options for performing the multiple operations that define or change logging processes.

To obtain a list of the commands available for use in the LOG configurator, enter HELP at the LOG configurator prompt as shown in Example 6-2.

Example 6-2. LOG Configurator Help

```plaintext
log>HELP

** LOG configurator commands **

   show (sh)    slog (sl)    ulog (ul)
   clear (cl)(c)  exit (ex)(e)  help (he)(h)  hold (ho)
   oclose (oc)    redo

log>
```

To display the syntax for each available command, enter HELP ALL as shown in Example 6-3.

Example 6-3. LOG Configurator HELP ALL

```plaintext
log>HELP ALL

command (abb)  parameter=value
           ---------  ---------
   show (sh)       [command = SLOG|ULOG|ALL]
Modifying Logging Configurations

Entering the LOG Configurator

[dest = OFFLINE]

slog (sl) [on = event#,...]
[off = event#,...]

ulog [nlogprocs = number processes allowed]
[usersperproc = users per logging process]

log>

Entering HELP commandname provides help for a specific command:

log>HELP SHOW

show (sh) [command = SLOG|ULOG|ALL]
[dest = OFFLINE]

Showing Current LOG Values

The SHOW command displays the LOG values as currently set.
SHOW has the following parameters:

SHOW [COMMAND = SLOG ]
ULDG ]
ALL ]
[DEST = OFFLINE ]

SLOG lists the state of the system logging events.
ULOG lists the number of user logging processes and users per logging process currently configured.
ALL lists all the information associated with the LOG configurator.
OFFLINE redirects the output of the SHOW command to the SYSGEN listing file, SYSGLIST.
Using OFFLINE does not immediately generate a printout. The information is sent to SYSGLIST until you either enter the OCLOSE command or exit the configurator. Exiting the configurator or using OCLOSE closes SYSGLIST and prints the file.
Using SHOW without using any parameters, is the same as specifying SHOW ALL. In addition, the value entered for the ULOG parameter includes the minimum, maximum, current, and default values.

To show the current user logging process in Example 6-4, enter SHOW ULOG:

Example 6-4. Showing User Logging Processes

log>SHOW ULOG

<table>
<thead>
<tr>
<th>configurable item</th>
<th>max</th>
<th>min</th>
<th>current</th>
</tr>
</thead>
<tbody>
<tr>
<td># of user logging processes</td>
<td>128</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td># users per logging process</td>
<td>1140</td>
<td>1</td>
<td>128</td>
</tr>
</tbody>
</table>

To view all currently configured values, as shown in Example 6-5, enter SHOW ALL:
### Example 6-5. Showing All Configured Values

```
log> SHOW ALL

<table>
<thead>
<tr>
<th>configurable item</th>
<th>max</th>
<th>min</th>
<th>current</th>
</tr>
</thead>
<tbody>
<tr>
<td># of user logging processes</td>
<td>128</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td># users per logging process</td>
<td>1140</td>
<td>1</td>
<td>128</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>system log events</th>
<th>event #</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Logging</td>
<td>100</td>
<td>ON</td>
</tr>
<tr>
<td>System Up</td>
<td>101</td>
<td>ON</td>
</tr>
<tr>
<td>Job Initiation</td>
<td>102</td>
<td>OFF</td>
</tr>
<tr>
<td>Job Termination</td>
<td>103</td>
<td>OFF</td>
</tr>
<tr>
<td>Process Termination</td>
<td>104</td>
<td>OFF</td>
</tr>
<tr>
<td>NM File Close</td>
<td>105</td>
<td>OFF</td>
</tr>
<tr>
<td>System Shutdown</td>
<td>106</td>
<td>ON</td>
</tr>
<tr>
<td>Power Failure</td>
<td>107</td>
<td>ON</td>
</tr>
<tr>
<td>I/O Error</td>
<td>111</td>
<td>ON</td>
</tr>
<tr>
<td>Physical Mount/Dismount</td>
<td>112</td>
<td>OFF</td>
</tr>
<tr>
<td>Logical Mount/Dismount</td>
<td>113</td>
<td>OFF</td>
</tr>
<tr>
<td>Tape Label</td>
<td>114</td>
<td>OFF</td>
</tr>
<tr>
<td>Console Log</td>
<td>115</td>
<td>ON</td>
</tr>
<tr>
<td>Program File Event</td>
<td>116</td>
<td>ON</td>
</tr>
<tr>
<td>Native Mode Spooling</td>
<td>120</td>
<td>ON</td>
</tr>
<tr>
<td>File Quarantine Event</td>
<td>121</td>
<td>OFF</td>
</tr>
<tr>
<td>Chdir</td>
<td>127</td>
<td>OFF</td>
</tr>
<tr>
<td>Process Adoption</td>
<td>128</td>
<td>OFF</td>
</tr>
<tr>
<td>File Owner Change</td>
<td>129</td>
<td>OFF</td>
</tr>
<tr>
<td>Architected Interface</td>
<td>130</td>
<td>OFF</td>
</tr>
<tr>
<td>Additional Processor Launch</td>
<td>131</td>
<td>ON</td>
</tr>
<tr>
<td>Password Change</td>
<td>134</td>
<td>OFF</td>
</tr>
<tr>
<td>System Logging Configuration</td>
<td>135</td>
<td>OFF</td>
</tr>
<tr>
<td>Restore</td>
<td>136</td>
<td>ON</td>
</tr>
<tr>
<td>Printer Access Failure</td>
<td>137</td>
<td>OFF</td>
</tr>
<tr>
<td>ACD Change</td>
<td>138</td>
<td>ON</td>
</tr>
<tr>
<td>Stream Initiation</td>
<td>139</td>
<td>ON</td>
</tr>
<tr>
<td>User Logging</td>
<td>140</td>
<td>ON</td>
</tr>
<tr>
<td>Process Creation</td>
<td>141</td>
<td>OFF</td>
</tr>
<tr>
<td>Security Configuration Change</td>
<td>142</td>
<td>OFF</td>
</tr>
<tr>
<td>Chgroup</td>
<td>143</td>
<td>ON</td>
</tr>
<tr>
<td>File Open</td>
<td>144</td>
<td>OFF</td>
</tr>
<tr>
<td>CI Command Logging</td>
<td>145</td>
<td>OFF</td>
</tr>
<tr>
<td>Maintenance Request</td>
<td>146</td>
<td>ON</td>
</tr>
<tr>
<td>UPS Monitor Event Logging</td>
<td>148</td>
<td>OFF</td>
</tr>
<tr>
<td>Diagnostic Information</td>
<td>150</td>
<td>ON</td>
</tr>
<tr>
<td>High Priority Machine Check</td>
<td>151</td>
<td>ON</td>
</tr>
<tr>
<td>Low Priority Machine Check</td>
<td>152</td>
<td>ON</td>
</tr>
<tr>
<td>Directory Open/Close Logging</td>
<td>155</td>
<td>OFF</td>
</tr>
<tr>
<td>CM File Close</td>
<td>160</td>
<td>OFF</td>
</tr>
</tbody>
</table>
```
Modifying Logging Configurations
Entering the LOG Configurator

Logging System Events

System logging records the use of certain resources by accounts, groups, and users. System logging can be used for several purposes, such as billing or obtaining an overview of system use. System logging describes system use by creating a running log of actual events, correlating the event with a job and session. The system manager chooses which events to enable or disable by setting an event number to ON or OFF. (Refer to the preceding example for a list of event numbers and their definitions.)

The SLOG command enables and disables the selected system logging events. SLOG has the following parameters:

SLOG (SL) [ON = event#, ... ]
[OFF = event#, ... ]

Enable the logging of an event by entering SLOG event#, ...

log>SLOG 100  (Event 100 enabled)

or

log>SLOG ON=100  (Event 100 enabled)

Disable the logging of an event by entering SLOG OFF=event#, ...

log>SLOG OFF=100  (Event 100 disabled)

Entering SLOG without ON enables logging. Entering SLOG without an event number causes an error:

log>SLOG

(error - no parameters are specified)''

Logging event 100 is a special case. If 100 is off, no logging (except that forced on by MPE/iX) takes place.

---

NOTE Some events are permanently set to ON. Currently, events 101, 111, 146, and 150 are forced on by MPE/iX.

NOTE MPE/iX is shipped from the factory with event number 116 "Program File Event" turned ON. Hewlett-Packard recommends that customers leave this event turned ON, as it can be useful for detecting potentially incompatible (and rare) runtime events.

---

Logging User Events

User logging provides a means for system users and subsystems to record additions and modifications to databases and other files using application programs. The system manager determines the maximum number of logging processes and the maximum number of users per logging process. The ULOG command configures the user logging process parameters. ULOG has the following parameters:
Modifying Logging Configurations
Entering the LOG Configurator

ULOG (UL)  \[NLOGPROCS = numberprocesses allowed \]
[USERSPERPROC = usersperloggingprocess]

NLOGPROCS controls the user logging ID (LID) table size. Lowering NLOGPROCS loses all current logging ID information from the tape created by SYSGEN. If NLOGPROCS remains unchanged or increases, the current logging ID information is copied to tape. The minimum and maximum number of processes allowed are 2 and 128, respectively.

USERSPERPROC specifies the maximum number of users assigned to each configured logging process. The minimum and maximum number of users per logging process are 1 and 1140, respectively.

**NOTE** Changing NLOGPROCS takes effect when a tape is created and an UPDATE CONFIG or INSTALL is conducted. Refer to Chapter 3, “System Startup Functions,” for information on installing or updating the operating system.

To set the number of processes or users per process, enter ULOG followed by the number of processes or users:

```
log>ULOG 40 ** Number of Processes **
```

or

```
log>ULOG USERSPERPROC=40 ** Number of Users per Process **
```

Clearing Log Configuration Changes
If you desire to clear all LOG configuration changes made, enter the CLEAR command at the LOG configurator prompt.

```
log>CLEAR
```

Once a SYSGEN> KEEP is done, the changes kept become permanent and CLEAR does not remove them.

Holding and Saving Configuration Changes
Using the system logging and user logging commands described in the following sections changes the LOG configuration specified in the SYSGEN command line or global BASEGROUP command. These changes are temporary and are easily lost if not properly saved.

Saving configuration changes is a two-step procedure. After you alter a configuration, you must, first, hold the changes before exiting the configurator. Second, use the global module KEEP command to save the changes.

To hold changes, enter the HOLD command at the LOG configurator prompt:

```
log>HOLD
```

You can work in a SYSGEN configurator, hold the changes, and continue working in other SYSGEN configurators before saving the changes.

To save the changes, hold all desired changes, exit to SYSGEN’s global module, and issue
the `KEEP` command:

```
sysgen> KEEP newgroupname
```

Refer to Chapter 4, “Using the System Generator (SYSGEN),” for additional information on using the `KEEP` command.

**Entering an MPE Command from the LOG Configurator**

Use the colon (`:`) to introduce an MPE command from the LOG configurator. To issue an MPE command, enter the command along with the colon. For example,

```
log>: SHOWTIME
THU, APR 20, 1989, 2:55PM
```

**Exiting the LOG Configurator**

Use the `EXIT` command to terminate the LOG configurator and return to the SYSGEN global module. Exit may be abbreviated `EX` or `E`. To end working in the LOG configurator, enter `EXIT` at the LOG configurator prompt:

```
log> EXIT
```

**Printing a Log File**

To analyze your logs and to read what you are logging, you must print your log files. To do this, use the `LOGTOOL` utility program. Enter `RUN LOGTOOL`.

In order to print a log, issue the following:

1. `RUN LOGTOOL`
2. `LOGTOOL> LIST LOG=log# OUTFILE=LP`
3. `LOGTOOL> EXIT`

Enter `HELP` after the `LOGTOOL` prompt for more information. The `STATUS` command reports on the status of all system log files.

The following example shows the use of the `STATUS` command in the sequence of printing a log.

```
RUN LOGTOOL
LOGTOOL> status
LOGTOOL> list log=0027 outfile=LP
```

If you do not specify the `OUTFILE` parameter, the log prints on your terminal screen. Typically this report is very long and ties up your terminal for quite some time. If this does happen, you can enter `CTRL Y` to break the process.
Printing a Subset of a Log File

If you like, you can filter the output of LOGTOOL utility to show you information about only a specific user or users. The syntax for this is shown below.

```
LIST {LOG=log_name} [;JSNAME=job/session_name

 ;USER=user_name [...]

 ;ACCOUNT=account_name
```

The input for these commands should be no longer than 80 characters. Default for all parameters is the wildcard @.

For example, to select log records from log files 1 through 5, with log information about password changes (log type 134), and user identification JTEST,MARIA,PAYROLL, you would enter the following.

```
LIST LOG=1/5;TYPE=134;JSNAME=JTEST;USER=MARIA;ACCOUNT=PAYROLL
```

This selection option is valid for the log types listed below:

- 102 Job Initiation
- 103 Job Termination
- 104 Process Termination
- 105 NM File Close (also 160)
- 112 Physical Mount/Dismount
- 113 Logical Mount/Dismount
- 114 Tape Label
- 115 Console Log
- 116 Program File Event
- 120 Native Mode Spooling
- 130 Architected Interface
- 134 Password Change
- 135 System Logging Configuration
- 136 Restore
- 137 Printer Access Failure
- 138 ACD Change
- 139 Stream Initiation
- 140 User Logging
- 141 Process Creation
- 143 Chgroup
- 144 File Open
Chapter 7

Modifying Miscellaneous Configuration Elements

The MISC configurator provides commands to configure various types of file information difficult to categorize elsewhere. The MISC configurator handles changes to job-related and session-related items, processes, system resource allocations, spool parameters, stack and heap sizes, and miscellaneous system information.
Entering the MISC Configurator

To access the MISC configurator, enter the **MISC** command (abbreviated **MI**) at the SYSGEN prompt, as shown in Example 7-1.

**Example 7-1. Activating the MISC Configurator**

```
sysgen> MISC

** MISC configurator commands **

 drin (dr) io job (jo) lrin (lr)
resource (re) session (se) show (sh) stack (st)
system (sy)

 clear (cl)(c) exit (ex)(e) help (he)(h) hold (ho)
oclose (oc) redo

misc>
```
Using the MISC Configurator Help Facility

The help facility enables you to identify quickly the function and syntax of MISC configurator commands.

To obtain a list of the commands available for use in the MISC configurator, enter HELP at the MISC configurator prompt, as shown in Example 7-2.

Example 7-2. MISC Configurator HELP

misc> HELP

** MISC configurator commands **

drin (dr)  io  job (jo)  lrin (lr)
resource (re)  session (se)  show(sh)  stack (st)
system (sy)

clear (cl)(c)  exit (ex)(e)  help (he)(h)  hold (ho)
oclose (oc)  redo

misc>
Modifying Miscellaneous Configuration Elements

Using the MISC Configurator Help Facility

Entering HELP ALL produces a list of all MISC configurator commands and syntax. Example 7-3 displays the output.

Example 7-3. MISC Configurator HELP ALL Output

```
misc>HELP ALL

commands (abb) parameter=value
----------------- -------------
drin (dr) global = global-rin#,...
io (io) [maxdyninput = dynamic input devs]
 [maxdynoutput = dynamic output devs]
 [maxdynio = dynamic I/O devs]
job (jo) [cputime = second-count]
 [maxlimit = maximum job limit]
 [pool = pool-size]
lrin (lr) [dest = OFFLINE]
resource (re) [grins = global-rin-allocation]
 [rins = total-rin-allocation]
 [iomont = io-monitor-table size]
 [maxcmcode = cm code segment size]
 [cmsegs = cm code segs per proc]
 [maxxdata = max size of xdata seg]
 [xdataperproc = max data segs/proc]
session (se) [maxlimit = maximum session limit]
 [logontimeout = time in seconds]
 [citetimeout = time in minutes]
 [pool = pool-size]
show (sh) [command = JOB|RESOURCE|SESSION|
 STACK|SYSTEM|ALL]
 [dest = OFFLINE]
stack (st) [nm = default nm stack size]
 [maxnm = max size of nm stack]
 [cm = default cm stack size]
 [maxcm = max size of cm stack]
 [heap = default heap size]
 [maxheap = max size of nm heap]
system (sy) [userversion = x.yy.zz]
 [logonprompt = max-255-characters]
 [ciprompt = max-255-characters]
 [enforcelogonudcs = ON|OFF]
```
You can request help for a specific MISC configurator command by entering `HELP commandname` at the MISC configurator prompt:

```
misc> HELP RESOURCE
```

```
resource (re) [grins = globalrinallocation]
[rins = totalrinallocation]
[iomont = iomonitorablesizer]
[maxcmcode = cmcodesegmentsizer]
[cmsegs = cmcodesegspersproc]
[maxxdata = maxsizeofxdataseg]
[xdataperproc = maxdatasegsproc]
```
Modifying Miscellaneous Configuration Elements

Showing Values of Current Configurable Items

The SHOW command, abbreviated SH, displays the values of the current configurable items referenced by it. SHOW has the following parameters:

```
SHOW (SH) [[COMMAND =] [IO]
[JOB]
[RESOURCE]
[SESSION]
[STACK]
[SYSTEM]
[ALL]
[[DEST =] OFFLINE]
```

JOB displays the job-related limits and default operating points. The displayed information includes: the CPU time limit for batch jobs, the maximum system job limit, and the number of preinitialized job processes (POOL). Refer to the MPE/iX Commands Reference Manual Volumes 1 and 2 for information on the JOB command.

Each of the remaining parameters has a corresponding command defined in this chapter.

RESOURCE displays system resource allocation values.

SESSION displays the session-related limits of the system and the default operating points.

STACK displays the sizes of the NM stack, CM stack, and the heap.

SYSTEM displays the settings of various system resource values, the system ID, and logon and command interpreter prompts. It also allows the option of bypassing cataloging of UDCs.

ALL lists all of the information described above.

OFFLINE redirects the output of the SHOW command to the SYSGEN listing file, SYSGLIST. Using OFFLINE does not immediately generate a printout. The information is sent to SYSGLIST until you either enter the OCLOSE command or exit the configurator. Exit the configurator or using OCLOSE closes SYSGLIST and prints the file.

Entering SHOW without a parameter is the same as specifying SHOW ALL, which lists all current values. To see the resources allocated through the MISC configurator, enter SHOW or SHOW ALL at the MISC configurator prompt.

Example 7-4 demonstrates the output from SHOW ALL:
### Example 7-4. MISC Configurator SHOW ALL Output

```
misc>SHOW ALL

<table>
<thead>
<tr>
<th>IO command</th>
<th>parameter</th>
<th>MAX</th>
<th>MIN</th>
<th>CURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DYNAMIC INPUT DEVS</td>
<td>maxdyninput</td>
<td>999</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>DYNAMIC OUTPUT DEVS</td>
<td>maxdynoutput</td>
<td>999</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>DYNAMIC IO DEVS</td>
<td>msxdynio</td>
<td>999</td>
<td>0</td>
<td>332</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JOB command</th>
<th>parameter</th>
<th>MAX</th>
<th>MIN</th>
<th>CURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT CPU LIMIT</td>
<td>cputime</td>
<td>32767</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAXIMUM LIMIT</td>
<td>maxlimit</td>
<td>3010</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>POOL SIZE</td>
<td>pool</td>
<td>200</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESOURCE command</th>
<th>parameter</th>
<th>MAX</th>
<th>MIN</th>
<th>CURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOBAL RIN LIMIT</td>
<td>grins</td>
<td>1365</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>TOTAL RIN LIMIT</td>
<td>rins</td>
<td>5459</td>
<td>5</td>
<td>150</td>
</tr>
<tr>
<td>IOMONT LIMIT</td>
<td>iomont</td>
<td>100</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>MAX CM CODE SIZE</td>
<td>maxcmcode</td>
<td>16384</td>
<td>1024</td>
<td>16384</td>
</tr>
<tr>
<td>CM SEGS PER PROC</td>
<td>cmsegs</td>
<td>255</td>
<td>1</td>
<td>63</td>
</tr>
<tr>
<td>MAX XDATA</td>
<td>maxxdata</td>
<td>32764</td>
<td>0</td>
<td>32764</td>
</tr>
<tr>
<td>MAX XDATA PER PROC</td>
<td>xdataperproc</td>
<td>255</td>
<td>0</td>
<td>255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION command</th>
<th>parameter</th>
<th>MAX</th>
<th>MIN</th>
<th>CURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMUM LIMIT</td>
<td>maxlimit</td>
<td>3010</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>SECONDS TO LOGON</td>
<td>logontimeout</td>
<td>600</td>
<td>10</td>
<td>180</td>
</tr>
<tr>
<td>CI TIMEOUT (MIN)</td>
<td>citimeout</td>
<td>546</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>POOL SIZE</td>
<td>pool</td>
<td>200</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STACK command</th>
<th>parameter</th>
<th>MAX</th>
<th>MIN</th>
<th>CURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT NM STACK</td>
<td>nm</td>
<td>262144</td>
<td>262144</td>
<td>262144</td>
</tr>
<tr>
<td>MAXIMUM NM STACK</td>
<td>maxnm</td>
<td>1068498944</td>
<td>262144</td>
<td>262144</td>
</tr>
<tr>
<td>DEFAULT CM STACK</td>
<td>cm</td>
<td>4096</td>
<td>256</td>
<td>1200</td>
</tr>
<tr>
<td>MAXIMUM CM STACK</td>
<td>maxcm</td>
<td>31232</td>
<td>256</td>
<td>31232</td>
</tr>
<tr>
<td>DEFAULT HEAP</td>
<td>heap</td>
<td>524288</td>
<td>524288</td>
<td>524288</td>
</tr>
<tr>
<td>MAXIMUM NM HEAP</td>
<td>maxheap</td>
<td>524288</td>
<td>524288</td>
<td>524288</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYSTEM command</th>
<th>parameter</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER VERSION</td>
<td>userversion</td>
<td>C.65.02</td>
</tr>
<tr>
<td>LOGON PROMPT</td>
<td>logonprompt</td>
<td>MPE/iX:</td>
</tr>
<tr>
<td>CI PROMPT</td>
<td>ciprompt</td>
<td></td>
</tr>
<tr>
<td>RELEASE</td>
<td></td>
<td>C.65.02</td>
</tr>
<tr>
<td>ENFORCE LOGON UDCS</td>
<td></td>
<td>OFF</td>
</tr>
</tbody>
</table>
Example 7-5 demonstrates using the `SHOW` command to see the values allocated to a particular parameter:

Example 7-5. MISC Configurator SHOW Output

```
misc>SHOW JOB

<table>
<thead>
<tr>
<th>JOB command</th>
<th>parameter</th>
<th>MAX</th>
<th>MIN</th>
<th>CURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT CPU LIMIT</td>
<td>cputime</td>
<td>32767</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAXIMUM LIMIT</td>
<td>maxlimit</td>
<td>3010</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>POOL SIZE</td>
<td>pool</td>
<td>200</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```
Deleting Global Resource Identification Numbers (RIN)

A resource identification number (RIN) identifies a user-defined resource. A RIN allows a user to exclusively access resources including I/O devices, disk files, and programs.

The **DRIN** command (abbreviated **DR**) removes allocated global resource identification numbers. **DRIN** has the following parameter:

```
DRIN (DR) [GLOBAL =] global-rin number
```

To delete a global RIN or a range of global RINs, enter **DRIN** and the RIN at the MISC configurator prompt:

```
misc>DRIN 4 ** Deletes single RIN **
```
```
misc>DRIN (1,2,3,4,15,84) ** Deletes group of RINs **
```

The changes made using the **DRIN** command take effect only if a tape containing the changes is generated and the newly created tape is used to update the configuration or install the system.
Configuring Job-Related Limits

The **JOB** command (abbreviated **JO**) configures job-related limits and default operating modes. **JOB** has the following parameters:

```
JOB (JO)   [CPUTIME   = secondcount ]
[   MAXLIMIT = maximumjoblimit ]
  [   POOL = poolsize ]
```

CPUTIME sets the default CPU time limit for batch jobs.

MAXLIMIT sets the maximum job limit that may be set through the **LIMIT** command.

POOL is the number of precreated JSMAIN processes ready to be used when someone logs on.

Table 7-1. shows the minimum and maximum numbers for the **JOB** command parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUTIME</td>
<td>0</td>
<td>32767</td>
</tr>
<tr>
<td>MAXLIMIT</td>
<td>0</td>
<td>3010</td>
</tr>
<tr>
<td>POOL</td>
<td>1</td>
<td>200</td>
</tr>
</tbody>
</table>

To change a job-related parameter value, enter the **JOB** command and at least one parameter to change:

```
misc> JOB CPUTIME=500 ** Using Keyword Parameter **
misc> JOB 5 8 150 ** Using Position Parameters **
```

In the preceding example, the first command sets the CPU execution time to 500 seconds. The second command sets the CPU execution time to 5 seconds, the maximum job limit to 8, and the pool size to 150.
Displaying Allocated Global RINs

The `LRIN` command (abbreviated `LR`) displays allocated global RINs that are currently allocated either to the console or offline. `LRIN` has the following parameter:

```
LRIN (LR)  [[DEST =] OFFLINE ]
```

`OFFLINE` redirects the output of the `LRIN` to the SYSGEN listing file, `SYSGLIST`. Using `OFFLINE` does not immediately generate a printout. The information is sent to `SYSGLIST` until you either enter the OCLOSE command or exit the configurator. Exiting the configurator or using OCLOSE closes `SYSGLIST` and prints the file.

To display the RIN ownership on the console screen, enter `LRIN` without a parameter:

```
misc>LRIN
```

<table>
<thead>
<tr>
<th>rin</th>
<th>username</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>MANAGER .SYS</td>
</tr>
<tr>
<td>148</td>
<td>MANAGER .QASYS</td>
</tr>
<tr>
<td>149</td>
<td>MANAGER .QASYS</td>
</tr>
<tr>
<td>150</td>
<td>MANAGER .QASYS</td>
</tr>
</tbody>
</table>

NOTE This example may vary depending on which system you have.
Setting Resource Allocations

The `RESOURCE` command (abbreviated `RE`) sets system resource allocations. `RESOURCE` has the following parameters:

- **RESOURCE (RE)**
 - `GRINS` = global-rin-allocation
 - `RINS` = total-rin-allocation
 - `IOMONT` = io-monitor-table-size
 - `MAXCMCODE` = cm code segment size
 - `CMSEGS` = cm code segs per proc
 - `MAXXDATA` = max size of xdata seg
 - `XDATAPERPROC` = max data segs/proc

GRINS sets the number of global RINs to be allocated.
RINS sets the total number of global and local RINs to be allocated.
IOMONT sets the size of the I/O monitor area.
MAXCMCODE sets the maximum CM code segment size allowed for any given process.
MAXXDATA sets the maximum extra data segment size allowed.
XDATAPERPROC sets the maximum number of extra data segments for any given process.

NOTE Changes to *GRINS* and *RINS* take effect only if a tape containing the changes is generated and the newly created tape is used to update the configuration or install the system.

Table 7-2. shows the minimum and maximum values for the `RESOURCE` command parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>GRINS</code></td>
<td>1</td>
<td>1365</td>
</tr>
<tr>
<td><code>RINS</code></td>
<td>5</td>
<td>5459</td>
</tr>
<tr>
<td><code>IOMONT</code></td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td><code>MAXCMCODE</code></td>
<td>1024</td>
<td>16384</td>
</tr>
<tr>
<td><code>CMSEGS</code></td>
<td>1</td>
<td>255</td>
</tr>
<tr>
<td><code>MAXXDATA</code></td>
<td>0</td>
<td>32764</td>
</tr>
<tr>
<td><code>XDATAPERPROC</code></td>
<td>0</td>
<td>255</td>
</tr>
</tbody>
</table>
To set one of the system resource allocations, enter the `RESOURCE` command and at least one parameter that is to change:

- `misc>RESOURCE GRINS=40` **Keyword**
- `misc>RE,,80 1024` **Positional**
- `misc>RE 50,,80 1024 CMSEGS=50` **Combination**

NOTE

Setting `IOMONT` too low (below 10) prevents the system from booting.
Setting Session-Related Limits

The SESSION command (abbreviated SE) configures session-related limits and default operating points. SESSION has the following parameters:

SESSION (SE)
[MAXLIMIT = maximum session limit]
[LOGONTIMEOUT = time in seconds]
[CITIMEOUT = time in minutes]
[POOL = pool-size]

MAXLIMIT sets the maximum session limit.
LOGONTIMEOUT sets the number of seconds a user has to log on to the system.
CITIMEOUT sets the number of minutes a user may be inactive at the terminal before being automatically logged off the system. A value of zero prevents automatic log off.
POOL is the number of precreated JSMAIN processes ready to be used when someone logs on.

Table 7-3. show the minimum and maximum values for SESSION command parameters.

Table 7-3. Minimum and Maximum Values for SESSION Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXLIMIT</td>
<td>1</td>
<td>3010</td>
</tr>
<tr>
<td>LOGONTIMEOUT</td>
<td>10</td>
<td>2700</td>
</tr>
<tr>
<td>CITIMEOUT</td>
<td>0</td>
<td>546</td>
</tr>
<tr>
<td>POOL</td>
<td>1</td>
<td>200</td>
</tr>
</tbody>
</table>

To configure a session-related limit, enter the SESSION command and at least one parameter to change. Here are three examples of the SESSION command. They show parameters in keyword, positional, and in combination formats, respectively.

misc>SESSION MAXLIMIT=80 LOGONTIMEOUT=300

misc>SE 200 150,,8

misc>SE 200 10 POOL=8
Setting Sizes of Native Mode and Compatibility Mode Stacks

The `STACK` command (abbreviated `ST`) configures the default sizes of the NM and CM stacks and the heap. `STACK` has the following parameters:

```
STACK (ST)  [NM   = default nm stack size]
            [MAXNM = max size of nm stack size]
            [CM   = default cm stack size]
            [MAXCM = max size of cm stack]
            [HEAP = default nm heap-size]
            [MAXHEAP = max size of nm heap]
```

NM sets the default NM stack size, which is expressed in bytes. The NM value must be less than the values of MAXNM.

MAXNM sets the maximum NM stack size, which is expressed in bytes.

CM sets the default CM stack size, which is expressed in words (16 bits in length). The value set for the CM parameter must be less than the value set for the MAXCM parameter.

MAXCM sets the maximum allowable CM stack size.

HEAP sets the default heap size, which is expressed in bytes. The value must not exceed MAXHEAP.

MAXHEAP sets the maximum heap size, which is expressed in bytes.

To change one of the `STACK` parameters, enter the `STACK` command and at least one parameter to change. Here are two examples. The first is keyword and the second is positional.

```
mi>STACK NM=262144 CM=4096

mi>STACK 262144 262144,,20000
```

Table 7-4. shows the minimum and maximum values of the `STACK` command parameters.

Table 7-4. Min. and Max. Values for STACK Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM</td>
<td>262144</td>
<td>1068498944</td>
</tr>
<tr>
<td>MAXNM</td>
<td>262144</td>
<td>1068498944</td>
</tr>
<tr>
<td>CM</td>
<td>256</td>
<td>4096</td>
</tr>
<tr>
<td>MAXCM</td>
<td>256</td>
<td>31232</td>
</tr>
<tr>
<td>HEAP</td>
<td>524288</td>
<td>1068498944</td>
</tr>
<tr>
<td>MAXHEAP</td>
<td>524288</td>
<td>1068498944</td>
</tr>
</tbody>
</table>
Setting Strings and String Parameters

The `SYSTEM` command (abbreviated `SY`) sets various strings and parameters. `SYSTEM` has the following parameters:

```
SYSTEM (SY)  [ [USERVERSION =] x.yy.zz]
             [ [LOGONPROMPT =] prompt string]
             [ [CIPROMPT    =] prompt string]
```

`USERVERSION` allows the system manager to identify the system with a version meaningful to your environment. This might identify some combination of third-party products.

`LOGONPROMPT` sets the system prompt.

`CIPROMPT` sets the prompt used by the command interpreter.

Table 7-5 shows the default values for the `SYSTEM` command parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>USERVERSION</td>
<td>A.50.00</td>
</tr>
<tr>
<td>PROMPT</td>
<td>MPE/iX:</td>
</tr>
<tr>
<td>CIPROMPT</td>
<td>:</td>
</tr>
</tbody>
</table>

To set one of the parameters relating to the `SYSTEM` command, enter the command and at least one parameter to change. Here are two examples of the keyword and positional formats:

```
misc> SYSTEM USERVERSION=A.A1.35

misc> SYSTEM A.A1.35 150:
```

NOTE

A changed `USERVERSION`, as in the previous example, is lost if the MISC configurator information is saved to the group `CONFIG.SYS`. The ID information is retained if it is saved to any group other than `CONFIG.SYS`. To change user version, generate a system load tape (SLT) and update with it.
Clearing MISC Configuration Changes

If you desire to clear all MISC configuration changes made, enter the `CLEAR` command at the MISC configurator prompt.

```
.misc> CLEAR
```

Once a `SYSGEN> KEEP` is done, the changes become permanent and `CLEAR` does not remove them.
Holding and Saving Configuration Changes

Using the MISC configurator commands described in the previous sections changes the configuration specified in the `SYSGEN` command line or global `BASEGROUP` command. These changes are temporary and are lost if not properly saved.

Saving configuration changes is a two-step procedure. After you alter a configuration, you must first hold the changes before exiting the configurator. Second, use the global module `KEEP` command to save the changes.

To hold changes, enter the `HOLD` command at the MISC configurator prompt:

```
  misc> HOLD
```

You can work in a `SYSGEN` configurator, hold the changes, and continue working in other `SYSGEN` configurators before saving the changes.

To save the changes, first hold all desired changes, exit to `SYSGEN`’s global module, and issue the `KEEP` command:

```
  sysgen> KEEP newgroupname
```

For additional information on using the `KEEP` command, refer to Chapter 4, “Using the System Generator (SYSGEN).”
Entering an MPE Command from the MISC Configurator

Use the colon (:) to introduce an MPE command while in the MISC configurator. To issue an MPE command, enter the command along with the colon. For example:

```
misc> :SHOWTIME
THU, APR 20, 1989, 2:55PM
misc>
```
Exiting the MISC Configurator

Use the **EXIT** command to terminate the MISC configurator and return to the SYSGEN Global module. **EXIT** may be abbreviated **EX** or **E**. To end working in the MISC configurator, enter **EXIT** at the MISC configurator prompt:

```
misc>EXIT
sysgen>
```
Chapter 8

Modifying System File Configurations

The SYSFILE configurator enables the system manager to change system libraries, programs, and the system message catalog. The changes are made to a list of the files. SYSFILE has many of the features of the IO configurator that permit the user to add, delete, and replace objects through a series of related commands.

NOTE
In order for SYSFILE configurator changes to become permanent, you must generate a boot tape. Update or install the system with the newly created boot tape to implement the changes.
Modifying System File Configurations
Entering the SYSFILE Configurator

Entering the SYSFILE Configurator

Example 8-1 demonstrates activating the SYSFILE configurator. To access the SYSFILE configurator, enter the `SYSFILE` command (abbreviated `SY`) at the SYSGEN prompt:

Example 8-1. Activating the SYSFILE Configurator

```
sysgen> SY
** SYSFILE configurator commands **
   aauto (aa)   aboot (ab)   acmsl (ac)   asprog (as)
   cmsl (cm)    dauto (da)   dboot (db)   dcmsl (dc)
   dsprog (ds)  lcmsl (lc)   rauto (ra)   rboot (rb)
   rcat (rc)   rcmsl (rcm)  rdcc (rd)    ripl (ri)
   rnmlib (rn)  rsprog (rs)  show (sh)
   clear (cl)(c)   exit (ex)(e)   help (he)(h)   hold (ho)
```

For additional information on entering the SYSFILE configurator, refer to Chapter 4, “Using the System Generator (SYSGEN).”

Using the SYSFILE Configurator Help Facility

The help facility enables you to identify quickly the function and syntax of SYSFILE configurator commands and options.

The help facility operates similarly to the global help facility. Example 8-2 demonstrates using the SYSFILE configurator's help facility to list all available SYSFILE commands. To obtain the list of commands, enter `HELP` at the SYSFILE configurator prompt:

Example 8-2. SYSFILE Configurator HELP

```
sysfile> HELP
** SYSFILE configurator commands **
   aauto (aa)   aboot (ab)   acmsl (ac)   asprog (as)
   cmsl (cm)    dauto (da)   dboot (db)   dcmsl (dc)
   dsprog (ds)  lcmsl (lc)   rauto (ra)   rboot (rb)
   rcat (rc)   rcmsl (rcm)  rdcc (rd)    ripl (ri)
   rnmlib (rn)  rsprog (rs)  show (sh)
   clear (cl)(c)   exit (ex)(e)   help (he)(h)   hold (ho)
```

Example 8-3 demonstrates using the SYSFILE configurator's help facility for listing all SYSFILE commands and their syntax. To display the syntax for each available command at the current level, enter `HELP ALL`.

Example 8-3. SYSFILE Configurator HELP ALL

<table>
<thead>
<tr>
<th>Command (Abb)</th>
<th>Parameter/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>aauto</code> (aa)</td>
<td><code>file</code> = filename, <code>type</code> = DISC</td>
</tr>
<tr>
<td><code>aboot</code> (ab)</td>
<td><code>image</code> = boot image name, <code>file</code> = filename, <code>type</code> = DISC</td>
</tr>
<tr>
<td><code>acmsl</code> (ac)</td>
<td><code>seg</code> = segment-name, <code>file</code> = filename, <code>[mode]</code> = S</td>
</tr>
<tr>
<td><code>asprog</code> (as)</td>
<td><code>prog</code> = program-name, <code>file</code> = filename</td>
</tr>
<tr>
<td><code>cmsl</code> (cm)</td>
<td><code>seg</code> = segment-name, <code>file</code> = filename</td>
</tr>
<tr>
<td><code>dauto</code> (da)</td>
<td><code>type</code> = DISC</td>
</tr>
<tr>
<td><code>dboot</code> (db)</td>
<td><code>image</code> = boot-image-name,...</td>
</tr>
<tr>
<td><code>dcmsl</code> (dc)</td>
<td><code>seg</code> = segment-name,...</td>
</tr>
<tr>
<td><code>dsprog</code> (ds)</td>
<td><code>prog</code> = program-name,...</td>
</tr>
<tr>
<td><code>lcmsl</code> (lc)</td>
<td><code>seg</code> = segment-name, <code>file</code> = filename, <code>[mode]</code> = S</td>
</tr>
<tr>
<td><code>rauto</code> (ra)</td>
<td><code>file</code> = autoboot filename, <code>type</code> = DISC</td>
</tr>
<tr>
<td><code>rboot</code> (rb)</td>
<td><code>image</code> = boot-image-name, <code>file</code> = filename, <code>type</code> = DISC</td>
</tr>
<tr>
<td><code>rcat</code> (rc)</td>
<td><code>name</code> = filename</td>
</tr>
<tr>
<td><code>rcmsl</code> (rcm)</td>
<td><code>seg</code> = segment-name, <code>file</code> = filename</td>
</tr>
<tr>
<td><code>rdcc</code> (rd)</td>
<td><code>file</code> = filename</td>
</tr>
<tr>
<td><code>ripl</code> (ri)</td>
<td><code>image</code> = IPL image name, <code>file</code> = IPL file name, <code>type</code> = DISC</td>
</tr>
<tr>
<td><code>rnmlib</code> (rn)</td>
<td><code>file</code> = filename</td>
</tr>
<tr>
<td><code>rsprog</code> (rs)</td>
<td><code>prog</code> = program-name, <code>file</code> = filename</td>
</tr>
<tr>
<td><code>show</code> (sh)</td>
<td><code>[file]</code> = AUTO</td>
</tr>
</tbody>
</table>

To request help for a specific SYSFILE configurator command, enter `HELP commandname` at the SYSFILE configurator prompt, as shown in Example 8-4.

Example 8-4. SYSFILE Configurator HELP ABOOT

<table>
<thead>
<tr>
<th>Command (Abb)</th>
<th>Parameter/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>aboot</code> (ab)</td>
<td><code>image</code> = boot image name, <code>file</code> = filename, <code>type</code> = DISC</td>
</tr>
</tbody>
</table>

sysfile>
Using SYSFILE Configurator Commands

The SYSFILE configurator commands perform five actions (add, delete, replace, list, and specify) on eight objects (autoboot image, boot image, compatibility mode segmented library (CMSL), system program, system catalog, network configuration (NETWORK CONFIG), initial program loader (IPL) image, and native mode library (NM LIBRARY)). In addition, the SYSFILE configurator provides other commands, some of which are common to other SYSGEN configurators: CLEAR, EXIT, HELP, HOLD, OCLOSE, and the colon (:).

Table 8-1. shows a command matrix of the add, delete, replace, list, and specify commands. The objects are listed from top to bottom, and the actions are listed from left to right.

Table 8-1. SYSFILE Configurator Command Matrix

<table>
<thead>
<tr>
<th></th>
<th>ADD</th>
<th>DELETE</th>
<th>REPLACE</th>
<th>LIST</th>
<th>SPECIFY</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO BOOT IMAGE</td>
<td>AAUTO</td>
<td>DAUTO</td>
<td>RAUTO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOOT IMAGE</td>
<td>ABOOT</td>
<td>DBOOT</td>
<td>RBOOT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM SL SEGMENT</td>
<td>ACMSL</td>
<td>DCMSL</td>
<td>RCMSL</td>
<td>LCMSL</td>
<td>CMSL</td>
</tr>
<tr>
<td>SYSTEM PROGRAM</td>
<td>ASPROG</td>
<td>DSPROG</td>
<td>RSPROG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSTEM CATALOG</td>
<td></td>
<td>RCAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NETWORK CONFIG</td>
<td></td>
<td>RDCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPL IMAGE</td>
<td></td>
<td>RIPL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM LIBRARY</td>
<td></td>
<td></td>
<td></td>
<td>RNMLIB</td>
<td></td>
</tr>
</tbody>
</table>

All commands have a two- or three-character abbreviation.

CAUTION Do not use the SYSFILE> RSPROG command to rename Hewlett-Packard supplied MPE/iX HP e3000 system files. A renamed system file can corrupt your system during an update. This problem can occur if you have third party software installed on your system and you have renamed some system files to use this software.

Use the SHOW command in SYSFILE to ensure that all Hewlett-Packard supplied system files have retained their original name. System filenames in both columns should be identical. If they are not identical, rename the files in the second column to the filename in the first column.
NOTE The examples used to demonstrate SYSFILE configurator commands may produce display screens that do not exactly match output from your system. What SYSGEN displays depends entirely on how your system is configured.

Displaying Current File Information

The `SHOW` command (abbreviated `SH`) displays the file information currently set through SYSFILe. `SHOW` has the following parameters:

```
SHOW (SH)  [FILE = AUTO ]
             [ BOOT ]
             [ CATALOG ]
             [ CMSL ]
             [ DCC ]
             [ IPL ]
             [ NMLIB ]
             [ SPROG ]
             [ ALL ]
             [DEST = OFFLINE ]
```

- **AUTO** shows all the autoboot images.
- **BOOT** shows all the boot images currently configured.
- **CATALOG** shows the system catalog in use.
- **CMSL** shows the CMSL (compatibility mode segmented library) in use.
- **DCC** shows which file will be used for network configuration.
- **IPL** shows the IPL images in use.
- **NMLIB** shows the NM library names.
- **SPROG** shows the specified system program names.
- **ALL** shows all of the above information.
- **OFFLINE** redirects the output of the `SHOW` command to SYSGEN's listing file, `SYSGLIST`. Using **OFFLINE** does not immediately generate a printout. The information is sent to `SYSGLIST` until you either enter the `OCLOSE` command or exit SYSGEN. Exiting SYSGEN or using `OCLOSE` closes `SYSGLIST` and prints the file.

To see current file information, enter the `SHOW` command and at least one parameter:

```
sysfile>SH NMLIB

NM LIB      = NL.PUB.SYS
```

To show all the current system file information for system libraries, programs and the message catalog, enter `SHOW ALL` or `SHOW` as shown in Example 8-5.
Example 8-5. SYSFILE Configurator SHOW ALL Output

```
sysfile> SHOW ALL
           DISC AUTOBOOT = NONE
           TAPE AUTOBOOT = NONE
      SYSTEM CATALOG = CATALOG.PUB.SYS
           CM SL = SL.PUB.SYS
       NMCONFIG FILE = NONE
        NM LIB = NL.PUB.SYS

<table>
<thead>
<tr>
<th>BOOT FILE</th>
<th>FILENAME</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISL.MPEXL.SYS</td>
<td>ISL.MPEXL.SYS</td>
<td>disc boot</td>
</tr>
<tr>
<td>DUMP.MPEXL.SYS</td>
<td>DUMP.MPEXL.SYS</td>
<td>disc boot</td>
</tr>
<tr>
<td>START.MPEXL.SYS</td>
<td>START.MPEXL.SYS</td>
<td>disc boot</td>
</tr>
<tr>
<td>INSTALL.MPEXL.SYS</td>
<td>INSTALL.MPEXL.SYS</td>
<td>tape boot</td>
</tr>
<tr>
<td>UPDATE.MPEXL.SYS</td>
<td>UPDATE.MPEXL.SYS</td>
<td>tape boot</td>
</tr>
<tr>
<td>A1002AI.MPEXL.SYS</td>
<td>A1002AI.MPEXL.SYS</td>
<td>both boot</td>
</tr>
<tr>
<td>A1002AM.MPEXL.SYS</td>
<td>A1002AM.MPEXL.SYS</td>
<td>both boot</td>
</tr>
<tr>
<td>A1002AP.MPEXL.SYS</td>
<td>A1002AP.MPEXL.SYS</td>
<td>both boot</td>
</tr>
<tr>
<td>A1100AI.MPEXL.SYS</td>
<td>A1100AI.MPEXL.SYS</td>
<td>both boot</td>
</tr>
<tr>
<td>A1100AM.MPEXL.SYS</td>
<td>A1100AM.MPEXL.SYS</td>
<td>both boot</td>
</tr>
<tr>
<td>A1100AP.MPEXL.SYS</td>
<td>A1100AP.MPEXL.SYS</td>
<td>both boot</td>
</tr>
<tr>
<td>CAEXR.MPEXL.SYS</td>
<td>CAEXR.MPEXL.SYS</td>
<td>both boot</td>
</tr>
<tr>
<td>IOMAP.MPEXL.SYS</td>
<td>IOMAP.MPEXL.SYS</td>
<td>both boot</td>
</tr>
<tr>
<td>CLKUTIL.MPEXL.SYS</td>
<td>CLKUTIL.MPEXL.SYS</td>
<td>both boot</td>
</tr>
<tr>
<td>DISCUTIL.MPEXL.SYS</td>
<td>DISCUTIL.MPEXL.SYS</td>
<td>both boot</td>
</tr>
<tr>
<td>SADPATCH.MPEXL.SYS</td>
<td>SADPATCH.MPEXL.SYS</td>
<td>both boot</td>
</tr>
<tr>
<td>SAT.MPEXL.SYS</td>
<td>SAT.MPEXL.SYS</td>
<td>both boot</td>
</tr>
<tr>
<td>MPROC.MPEXL.SYS</td>
<td>MPROC.MPEXL.SYS</td>
<td>both boot</td>
</tr>
<tr>
<td>UNIPROC.MPEXL.SYS</td>
<td>UNIPROC.MPEXL.SYS</td>
<td>both boot</td>
</tr>
<tr>
<td>MDIAG.MPEXL.SYS</td>
<td>MDIAG.MPEXL.SYS</td>
<td>both boot</td>
</tr>
<tr>
<td>TDIAG.MPEXL.SYS</td>
<td>TDIAG.MPEXL.SYS</td>
<td>both boot</td>
</tr>
<tr>
<td>EDBC.MPEXL.SYS</td>
<td>EDBC.MPEXL.SYS</td>
<td>both boot</td>
</tr>
<tr>
<td>EDPROC.MPEXL.SYS</td>
<td>EDPROC.MPEXL.SYS</td>
<td>both boot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPL FILE</th>
<th>FILENAME</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISL2.MPEXL.SYS</td>
<td>ISL2.MPEXL.SYS</td>
<td>tape ipl</td>
</tr>
<tr>
<td>MMSAVE.MPEXL.SYS</td>
<td>MMSAVE.MPEXL.SYS</td>
<td>disc ipl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYSTEM PROGRAM</th>
<th>FILENAME</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFHPIBFS.PUB.SYS</td>
<td>IFHPIBFS.PUB.SYS</td>
<td>system prog</td>
</tr>
<tr>
<td>XL.PUB.SYS</td>
<td>XL.PUB.SYS</td>
<td>system prog</td>
</tr>
<tr>
<td>PSIMDBDL.DIAG.SYS</td>
<td>PSIMDBDL.DIAG.SYS</td>
<td>system prog</td>
</tr>
<tr>
<td>PSINIOLDL.DIAG.SYS</td>
<td>PSINIOLDL.DIAG.SYS</td>
<td>system prog</td>
</tr>
<tr>
<td>SYSDIAG.PUB.SYS</td>
<td>SYSDIAG.PUB.SYS</td>
<td>system prog</td>
</tr>
<tr>
<td>DTCSWI04.PUB.SYS</td>
<td>DTCSWI04.PUB.SYS</td>
<td>system prog</td>
</tr>
<tr>
<td>DTCSWJ04.PUB.SYS</td>
<td>DTCSWJ04.PUB.SYS</td>
<td>system prog</td>
</tr>
</tbody>
</table>
```
The add commands (AAUTO, ABOOT, ACMSL, and ASPROG) add objects to the list of files dumped onto SYSGEN’s tape:

AAUTO adds an autoboot file to the list of files.
ABOOT adds a boot image to the list of files.
ACMSL adds a segment to a temporary copy of the CMSL, which SYSGEN automatically manages.
ASPROG adds a system program or other file to the list of files.

Adding Autoboot Files

The AAUTO command (abbreviated AA) adds an autoboot file to the list of files dumped onto SYSGEN’s tape. The command has the following parameters:

```
AAUTO (AA)  [FILE     =] autobootfilename
            [TYPE     =   DISC ]
            [ TAPE ]
            [ BOTH ]
```

FILE specifies the file name that contains autoboot commands. If it is not fully qualified with group and account name, it defaults to the current group and account. If the specified file does not exist, an error occurs, and the system issues a message.

NOTE Always use fully qualified file names.

TYPE specifies the type of autoboot files to add. TYPE allows the following types:

- DISC Specifies that the file is applicable to a disk boot only.
- TAPE Specifies that the file is applicable to a tape boot only.
- BOTH Specifies that the file is applicable to both disk boot and tape boot.

There can be only one disk and one tape autoboot file, although neither is required. The tape and disk autoboot files become TAPEAUTO.MPEXL.SYS and AUTOBOOT.MPEXL.SYS, respectively.

Adding Boot Files

The ABOOT command (abbreviated AB) adds a boot image to the system file configuration. The command has the following parameters:

```
ABOOT (AB)  [IMAGE     =] bootimagename
            [FILE      =] filename
            [TYPE      =  DISC ]
            [ TAPE ]
            [ BOTH ]
```

Chapter 8
IMAGE specifies the name of a boot image. If the specified boot image already exists, an error occurs.

FILE adds the file name of the boot image. If the file name is not fully qualified, it defaults to the current group and account. If SYSGEN is run from a different group and account when the tape is made, unexpected results occur (for example, cannot find the specified files). If the file to be added does not exist, an error occurs.

TYPE specifies the type of boot images to add. TYPE allows the following types:

- DISC Specifies that the file is applicable to a disk boot only.
- TAPE Specifies that the file is applicable to a tape boot only.
- BOTH Specifies that the file is applicable to both disk boot and tape boot.

To add file information for the boot image, enter the ABOOT command, file name, and at least one parameter:

```
sysfile> ABOOT START2.UTIL.SYS START2.UTIL.SYS TYPE=DISC
```

Adding a Segment to the Compatibility Mode Segmented Library (CMSL)

The ACMSL command (abbreviated AC) adds a segment to the CMSL. The command has the following parameters:

```
ACMSL (AC) [SEG =] segmentname
             [FILE =] filename
             [MODE = S ]
             [ C ]
             [ P ]
             [ U ]
```

SEG specifies a new segment name with a maximum of eight characters. If an existing segmentname is specified, an error occurs.

FILE specifies a file name to be added to the CMSL. The filename parameter can be fully qualified with group and account. If not, it defaults to the current group and account. If filename cannot be found, an error occurs.

MODE indicates where the added SL segment is to reside. It expects one of the four options listed below. Other entries cause errors.

- P Declares a segment to be a permanently allocated user segment. This parameter performs the same function as the ALLOCATE command.
- S Declares a segment to be a permanently allocated system intrinsic segment (in virtual memory).
- C Declares a segment to be a core-resident system intrinsic segment.
- U Declares a segment to be a temporarily allocated user segment.

Adding File Names to Dump to Tape

The ASPROG command (abbreviated AS) adds a system program or other file to the list of files to be saved on tape. The command has the following parameters:

```
ASPROG (AS) [PROG =] program-name
```
PROG expects a system program name. If the specified program-name already exists in the system program list, an error occurs.

FILE expects a file name to be used as the system program. If it is not fully qualified with group and account name, it defaults to the current group and account. If the specified filename does not exist, an error occurs.

To add a program to tape, enter the program and file name:

```bash
sysfile> ASPROG FCOPY.PUB.SYS FCOPY.PUB.SYS
```

Deleting Objects from the SYSGEN Tape

The delete commands (DAUTO, DBOOT, DCMSL, and DSPROG) delete objects from the list of files dumped to tape with SYSGEN's global module TAPE command:

- **DAUTO** deletes the specified autoboot type from the list of files.
- **DBOOT** deletes boot images from the list of files.
- **DCMSL** deletes segments from the CMSL.
- **DSPROG** removes system programs or files from the configuration.

Deleting Autoboot Images

The **DAUTO** command (abbreviated **DA**) deletes the specified autoboot type from the list of files dumped onto SYSGEN's tape. The command has the following parameter:

```
DAUTO    [TYPE  =   DISC ]
[ TAPE ]
[ BOTH ]
```

TYPE specifies the type of autoboot file deleted. The following types are allowed:

- **DISC** Specifies that the file applies to disk only.
- **TAPE** Specifies that the file applies to tape only.
- **BOTH** Specifies that the file applies to both disk and tape.

Deleting an autoboot file, creating a SYSGEN tape, and updating your system using the newly generated tape does not remove the disk autoboot file from the system. Remove the disk file using the ISL **INSTALL** command.

Deleting Boot Images

The **DBOOT** command (abbreviated **DB**) deletes a boot image file name. If the boot image has an associated library, **DBOOT** also deletes the library. **DBOOT** has the following parameter:

```
DBOOT (DB)     [IMAGE    =] bootimagename
```

IMAGE is a repeated parameter that specifies which boot image names you want to delete. If a specified boot image name does not exist in the configuration, a warning is issued.

Use the **SHOW** command to display a listing of the applicable boot image file names.
To delete one or more boot image file names, enter `DBOOT` and the file name(s) to be removed at the SYSFILE prompt:

```plaintext
sysfile> DBOOT filename
```

Deleting Compatibility Mode Segments from a SYSGEN Tape

The `DCMSL` command (abbreviated `DC`) deletes segments from the compatibility mode segmented library (CMSL). The `DCMSL` command has the following parameter:

```plaintext
DCMSL (DC) [SEG =] segment-name,...
```

`SEG` is a repeated parameter that specifies the existing segment name. If a nonexistent segment name is specified, an error occurs.

Use the `LCMSL` command to list the contents of the CMSL.

Removing System Programs from a SYSGEN Tape

The `DSPROG` command (abbreviated `DS`) removes system programs or files from the system configuration. `DSPROG` has the following parameter:

```plaintext
DSPROG (DS) [PROG =] programname,...
```

`PROG` is a repeated parameter that specifies the system program name to be deleted. If a specified program name does not exist, an error occurs.

To remove a program or file name, enter the command and name:

```plaintext
sysfile> DS FCOPY.PUB.SYS
```

Deleting a system program does not remove it from the disk. To remove it from disk, an ISL `INSTALL` must be performed.

Replacing Objects on the SYSGEN Tape

The replace commands (`RAUTO`, `RBOOT`, `RCAT`, `RCMSL`, `RDCC`, `RIPL`, `RNMLIB`, and `RSProg`) replace or modify information in the list of SYSGEN dump files.

- **RAUTO** replaces an existing autoboot image or modifies the autoboot type.
- **RBOOT** replaces an existing boot image or modifies the boot type.
- **RCAT** replaces the message catalog.
- **RCMSL** replaces a segment in the temporary copy of the CMSL.
- **RDCC** replaces network configuration file dumped to the SYSGEN tape.
- **RIPL** replaces an existing IPL image.
- **RNMLIB** replaces a native mode (NM) library.
- **RSProg** replaces an existing system program or other file.

Replacing Autoboot Images

The `RAUTO` command (abbreviated `RA`) replaces an existing autoboot image in the list of files dumped to SYSGEN’s tape. The command has the following parameters:

```plaintext
RAUTO (RA) [FILE =] autobootfilename
```
Modifying System File Configurations

Entering the SYSFILE Configurator

[TYPE = DISC]
[TAPE]
[BOTH]

FILE specifies a file name to replace the designated autoboot image. If it is not fully qualified with group and account name, it defaults to the current group and account. If the specified file does not exist, an error occurs.

TYPE specifies the boot image type. The various types are defined as follows:

DISC Specifies that the file is applicable to a disk boot only.
TAPE Specifies that the file is applicable to a tape boot only.
BOTH Specifies that the file is applicable to both disk boot and tape boot.

To modify or replace an autoboot image file name, enter the command, fully qualified file name, and type:

sysfile> RAUTO filename TYPE=DISC

Use the SHOW command to display the autoboot image file names maintained by the system.

Replacing Boot Images

The RBOOT command (abbreviated RB) modifies the boot type of an existing boot image file name or replaces the boot image file name with another boot image file name. The command has the following parameters:

RBOOT (RB) [IMAGE =] boot-image-name
[FILE =] filename
[TYPE = DISC]
[TAPE]
[BOTH]

IMAGE specifies an existing boot image name to be modified or replaced. If the specified boot image does not exist, an error occurs.

FILE specifies a file name to replace the designated boot image. If it is not fully qualified with group and account name, it defaults to the current group and account. If the specified file does not exist, an error occurs.

TYPE specifies the boot image type. The various types are defined as follows:

DISC Specifies that the file is applicable to a disk boot only.
TAPE Specifies that the file is applicable to a tape boot only.
BOTH Specifies that the file is applicable to both disk boot and tape boot.

To modify or replace a boot image file name, enter the command, image name, and fully qualified file name. Here are two examples.

sysfile> RBOOT imagename TYPE=DISC

sysfile> RBOOT imagename filename DISC

Use the SHOW command to display the boot image file names maintained by the system.
Modifying System File Configurations
Entering the SYSFILE Configurator

Configuring a Message Catalog
The RCAT command (abbreviated RC) configures the message catalog to be used on the target system. RCAT has the following parameter:

 RCAT (RC) [NAME =] filename

The system message catalog contains all the system and subsystem messages. It is retained under a known file name (CATALOG.PUB.SYS).

NAME specifies a catalog file name. If the name is not fully qualified, it defaults to the current group and account.

To replace the default catalog name CATALOG.PUB.SYS with a new catalog name, enter RCAT and the fully qualified file name:

 sysfile>RCAT filename.group.account

If the new message catalog file was not previously created, an error occurs.

NOTE For information on how to modify an existing message catalog, refer to the Message Catalogs Programmer’s Guide.

Replacing a CMSL Segment
The RCMSL command (abbreviated RCM) replaces a segment in the CMSL. RCMSL has the following parameters:

 RCMSL (RCM) [SEG =] segment-name
 [FILE =] filename
 [MODE = S]
 [C]
 [P]
 [U]

SEG specifies a new segment name of maximum eight characters. If a nonexistent segment name is specified, an error occurs.

FILE specifies a file name to be added to the CMSL. The filename parameter can be fully qualified with group and account. If not, it defaults to the current group and account. If the file name cannot be found, an error occurs.

MODE indicates where the added SL segment is to reside. It expects one of the four options listed below. Other input causes an error.

P Declares a segment to be a permanently allocated user segment. This parameter performs the same function as the ALLOCATE command.

S Declares a segment to be a permanently allocated system intrinsic segment (in virtual memory).

C Declares a segment to be a core-resident system intrinsic segment.

U Defaults if MODE is not specified.

Use the LCMSL command to display the segments maintained in the CMSL.
Replacing or Defining a Network Configuration File

The RDCC command (abbreviated RD) defines the network configuration file to be used. This command also checks for conflicts with SYSGEN’s I/O configuration. The file named becomes NMCONFIG.PUB.SYS for SYSGEN’s tape only. The user must install or update the system from tape before the file can be used by the network software.

RDCC has the following parameter:

\[\text{RDCC (RD) [FILE =] filename} \]

The \textit{FILE} parameter identifies the network configuration file. If the name is not fully qualified, it defaults to the current group and account. If no file parameter is entered, the network configuration file is changed back to NMCONFIG.PUB.SYS.

To add the network configuration file information to the current SYSGEN configuration information, enter the command and file name. Then, follow this sample sequence:

\begin{verbatim}
sysfile>RDCC filename.group.account
sysfile>HOLD (Cross-validation conflicts noted)
sysfile>EXIT
sysgen>IO (Make I/O changes if necessary)
 (Conflicts also noted here)
sysgen>KEEP NETWORK (Conflicts also noted here)
sysgen>TAPE (Conflicts also noted here)
\end{verbatim}

For additional information, refer to Chapter 5, “Modifying Input/Output (I/O) Configurations.” For additional information on remote configurations, refer to the Asynchronous Serial Communications System Administrator’s Reference Manual and the HP 3000/ix Network Planning and Configuration Guide.

Replacing an IPL Image

The RIPL command (abbreviated RI) replaces an existing IPL image in the list of files dumped onto SYSGEN’s tape. The command has the following parameters:

\[\text{RIPL (RI) [IMAGE =] imagename [FILE =] filename} \]

\textit{IMAGE} specifies an existing IPL image to be modified or replaced. If the specified image does not exist, an error occurs and the system issues a message.

\textit{FILE} specifies a file name to replace the specified IPL image. If it is not fully qualified with group and account name, it defaults to the current group and account. If the specified file does not exist, an error occurs and the system issues a message.

There can be only one disk and one tape IPL, each of which is replaced by its image name. Both IPL files must reside on the tape.

To replace an IPL image, enter the command and the image and file names:

\begin{verbatim}
sysfile>RIPL imagename filename
\end{verbatim}

Replacing the Native Mode Library

The RNMLIB command (abbreviated RN) replaces the system NM library that resides in NL.PUB.SYS. The RNMLIB command has the following parameters:

\[\text{RNMLIB (RN) [FILE =] filename} \]
Modifying System File Configurations

Entering the SYSFILE Configurator

FILE is the file name of the library to replace the current one. If the file name is not fully qualified, it defaults to the current group and account. If the file name does not exist, an error occurs.

To replace an existing NM library, enter the following command format:

```
sysfile> RNMLIB filename.group.account
```

Replacing a System Program

The RSPROG command (abbreviated RS) replaces an existing system program. RSPROG has the following parameters:

```
RSPROG (RS) [PROG =] programname [FILE =] filename
```

PROG specifies an existing program name. If the name entered does not exist, an error occurs.

FILE specifies the file name to replace the specified system program. If the file name is not fully qualified with group and account name, it defaults to the current group and account. If the file name does not exist, an error occurs.

Enter the command, an existing program name, and the fully qualified file name to replace the system program:

```
sysfile> RSPROG programname.group.account filename.group.account
```

Use the SHOW command (SH SPROG) to display all the system programs maintained by the configuration.

CAUTION

Do not use the SYSFILE> RSPROG command to rename Hewlett-Packard supplied MPE/iX HP e3000 system files. A renamed system file can corrupt your system during an update. This problem can occur if you have third party software installed on your system and you have renamed some system files to use this software.

Use the SHOW command in SYSFILE to ensure that all Hewlett-Packard supplied system files have retained their original name. System filenames in both columns should be identical. If they are not identical, rename the files in the second column to the filename in the first column.

Using a Segmented Library File as CMSL

The CMSL command (abbreviated CM) specifies an SL file to be used as the compatibility mode SL. CMSL has the following parameter:

```
CMSL (CM) [SL =] slname
```

The slname parameter is an SL file name. If the SL file name is not fully qualified, it defaults to the current group and account. If an SL name is not specified, the default is SL.PUB.SYS.

Enter the command and a fully qualified SL name to change the default, SL.PUB.SYS, as shown in the following example.
Listing CMSL Contents

The `LCMSL` command (abbreviated `LC`) lists the contents of the CMSL or a single segment in the CMSL. `LCMSL` has the following parameter:

```
LCMSL (LC) [SEG =] segmentname
```

The segment name designates which segment to list. If the segment name is not specified, the entire contents of the CMSL is listed.

If SYSGEN cannot locate the segment name, an error is generated, and the command is rejected by the segmenter.

To list the contents of a single segment, enter the command and the segment name:

```
sysfile>LCMSL cminin
```

To list the entire CMSL, enter the command without a parameter.

NOTE

The `LCMSL` command locks whichever SL it is listing. If the CMSL is `SL.PUB.SYS`, and no changes have been made (changes force a temporary SL to be created), any program that uses the SL stops. This can cause the system to appear to be down.

Clearing SYSFILE Configurator Changes

If you desire to clear all SYSFILE configuration changes made, enter the `CLEAR` command at the SYSFILE configurator prompt:

```
sysfile>CLEAR
```

Once a `SYSGEN> KEEP` is done, the changes become permanent and `CLEAR` does not remove them.

Holding and Saving Configuration Changes

Using the SYSFILE configurator commands described in the previous sections changes the configuration specified in the SYSGEN command line or global `BASEGROUP` command. These changes are temporary and are lost if not properly saved.

Saving configuration changes is a two-step procedure. After you alter a configuration, you must first, hold the changes before exiting the configurator. Second, use the global module `KEEP` command to save the changes.

To hold changes, enter the `HOLD` command (abbreviated `HO`) at the SYSFILE configurator prompt:

```
sysfile>HOLD
```

You can work in a SYSGEN configurator, hold the changes, and continue working in another SYSGEN configurator before saving the changes.

To save the changes, hold all desired changes, exit to SYSGEN’s global module, and issue the `KEEP` command (abbreviated `KE` or `K`):
Modifying System File Configurations

Entering the SYSFILE Configurator

sysgen> **KEEP newgroupname**

Entering an MPE Command from the SYSFILE Configurator

Use the colon (:) to introduce an MPE command while in the SYSFILE configurator. To issue an MPE command, enter the command following the colon. For example:

sysfile>: **SHOWTIME**

THU, APR 20, 1989, 2:55PM

sysfile>

Exiting the SYSFILE Configurator

Use the **EXIT** command (abbreviated **EX** or **E**) to deactivate the SYSFILE configurator and to return to the SYSGEN global module.

To exit the configurator, enter **EXIT** at the SYSFILE configurator prompt:

sysfile> **EXIT**

sysgen>
Halting System Activity

A system shutdown does not imply turning off power to the computer hardware. Instead, system shutdown means stopping the computer’s operating system. Stopping system activity makes the computer inaccessible to users. You would need to shut down the system for maintenance, for a physical move, for changing the system configuration, or for security reasons.

If done properly, a shutdown preserves all system and user files. Before the shutdown occurs, backlogged reports can be printed, or they can be saved to tape and replaced when the system is running again.

The shutdown procedure usually consists of several steps, including the following:

- Telling users well in advance of a planned shutdown
- Warning users a few minutes before the shutdown
- Preventing anyone from starting a new job or session, or printing new reports
- Clearing the backlog of reports before the shutdown (This step is unnecessary unless you need the space that these reports are using.)
- Answering any console requests
- Shutting open communication lines
- Aborting remaining jobs and sessions
- Entering the =SHUTDOWN command

The next several sections describe procedures associated with shutting down a system. Read through the remainder of this chapter before attempting a shutdown based on these instructions. Become familiar with the commands and options used in each process. Examine the processes for areas that you may need to customize for your system.
Including Shutdown Information in the Welcome Message

Include shutdown information in the welcome message. Remember to include information about the time of the shutdown and whom a user should contact with questions. Enter:

```
: WELCOME
# Return
```

This erases the present WELCOME message. Enter for a second time:

```
: WELCOME
#
```

When the pound sign prompt (#) appears, enter the message line by line, terminating each line with Return. Enter Return at the prompt to terminate the WELCOME message facility.

When users log on to the computer, the message notifies them of the impending shutdown. They can then plan their schedules accordingly.

Telling Users about the Shutdown

Use the TELL command to alert users to the upcoming shutdown approximately 15 minutes beforehand. Enter:

```
: TELL @S; Shutdown in 15 minutes. Please log off.
```

This message reaches all active terminals, except those in quiet mode.

Limiting System Use

Use the LIMIT and JOBFENCE commands to prevent any new users from logging on or any scheduled jobs from starting. Enter:

```
: LIMIT 0,0
: JOBFENCE 14
```

The command LIMIT 0,0 limits the number of concurrently running jobs and sessions. The two parameters, in this case, 0,0, define the allowed number of jobs and sessions, respectively.

The command JOBFENCE 14 defines the minimum input priority that a job or session must have to execute. The parameter 14 raises the jobfence to the highest level.

Shutting the Spool Queues and Handling the Remaining Reports

To verify that the printer is available, to shut down spool queues, and to begin removing backlogged reports, complete the following steps:

1. Verify the printer is active. Enter:

```
: SHOWDEV nn
```

(nn is your printer’s ldev number.)
2. Shut down the spool queue.
 Entering the SHUTQ command shuts down the spool queues to prevent users from sending reports to the printer. Enter:

 \[
 \text{SHUTQ } nn
 \]
 \[
 (nn \text{ is your printer’s ldev number.})
 \]

 or

 \[
 \text{SHUTQ } \text{devname}
 \]
 \[
 (\text{devname is the device name of the spooled device})
 \]

3. List the backlog of existing reports. Enter:

 \[
 \text{LISTSPF}
 \]

 This lists all spool files. If the system responds NO SUCH FILE(S), you have no spool files. Since output spool files are permanent files, they will still be present when the system is restarted.

Warning Users Two Minutes Before Shutting Down the System

The TELL command, mentioned in previous sections, does not send its message to sessions in quiet mode. The WARN command, however, sends its message to all sessions, including those in quiet mode.

Warn users two minutes before shutting down the system. Enter:

\[
\text{WARN } @\text{S;SYSTEM SHUTDOWN IN 2 MINUTES. LOG OFF.}
\]

Closing Any Open Communication Lines

Close any of the system’s open communication lines. Enter both of the following to deactivate the NS 3000/XL product:

\[
\text{NSCONTROL ABORT}
\]
\[
\text{NETCONTROL STOP}
\]

NOTE

NSCONTROL ABORT ensures that all network management processes are shut down.

If you have any other communications products, consult their manuals for instructions on deactivating them.

Shutting Down the System

To shut down the system, enter:

\[
\text{CTRL A}
\]
\[
\rightarrow\text{SHUTDOWN}
\]
The following keywords can also be entered in the `SHUTDOWN` command to document the shutdown:

- SYSTEM
- NETWORK
- DTC
- TERMINAL
- TAPE
- DISC
- OTHER

You can use these options to indicate the reason that you are shutting down the system. For example, if you shut down to clear a DTC hang, use the `DTC` option.

```
CTRL A
=SHUTDOWN DTC
```

The console responds by listing shutdown messages similar to these:

- Shutdown of operating system begins. (Shut 1)
- Shutdown of user processes begins (Shut 2)
- Shutdown of jobs & sessions begins. (Shut 3)
- Spoolers notified of a shutdown. (Shut 16)
-
-
- Shutdown of system processes begins. (Shut 4)
- Shutdown of system managers begins. (Shut 5)
- Shutdown of operating system complete. (Shut 6)
A Using the Access Port (AP)

This section describes the access port (AP) commands and provides the procedures for enabling a remote console, for configuring a system remote support modem port, and for performing the AP self-test.
Configuring the Console

Some of the terminal configuration parameters are important for proper AP operation. Both terminals connected to ports T0 (system console) and T1 (remote support modem port) should be configured with the following parameter settings:

From the DATACOMM CONFIGURATION menu:

- Parity/DataBits: None/8
- Chk Parity: NO
- EnqAck: YES
- CS(CB)Xmit: NO
- RecvPace: Xon/Xoff
- XmitPace: NONE

From the TERMINAL CONFIGURATION menu:

- LocalEcho: OFF
- SPOW(B): NO
- Line/Page(D): LINE (**necessary during control mode**)
- ReturnDef: Return

Parameters not mentioned can be set to any value and do not affect AP operation.

NOTE

The AP is designed to operate with the HP 700/92 terminal. There have been no deliberate steps taken to preclude operation with other terminals (for example, the AP does not check the terminal identification and refuse to operate with anything else), but no other terminals have been tested for proper operation. Use other terminals at your own risk.

Entering Control Mode and Using the Command Interpreter

Control mode is the mode of operation needed to use the access port commands. Activate the AP control mode interface by entering CTRL B at the system console:

```
CTRL B
CM>
```

To use the access port command interpreter, enter a two-character AP command at the control mode prompt (CM>), followed by a carriage return:

```
CM> RS
```

Execution of this command irrecoverably halts all system processing and I/O activity and restarts the computer system.

If the AP command parser does not recognize the two characters entered as a command,
Using the Access Port (AP)
Configuring the Console

the system displays an error message similar to the following:

Illegal command, type HE for help.

Interpreting the System Status Line

When in control mode, the AP displays the system status line across the softkey labels of the system console. The system status line has this format:

CODE: xxxx REMOTE: < 1 > < 2 > < 3 > ACCESS FAULT: yy

Table A-1. describes the information presented in the status line.

Table A-1. Status Line Display

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxx</td>
<td>Represents the four digit LED error code display.</td>
</tr>
<tr>
<td>1</td>
<td>May have one of three values: enabled, pending, or disabled. These correspond to the status of the remote console accessibility. The remote console can either be accessed (enabled), disconnected (disabled), or waiting for a user session to end (pending).</td>
</tr>
<tr>
<td>2</td>
<td>May be either active or inactive. Active indicates that a remote console is currently being used. Inactive indicates that a remote console is not currently being used.</td>
</tr>
<tr>
<td>3</td>
<td>May have one of two values: single or multiple. This designates whether the AP allows a single attempt (single) or multiple attempts (multiple) to access the remote console.</td>
</tr>
<tr>
<td>yy</td>
<td>Displays the number of times someone tried to access the remote console but failed to give the proper password.</td>
</tr>
</tbody>
</table>

The status line is updated with each change, such as when the system cycles through its self-test.

Using Access Port Commands

The AP has several commands for manipulating its activities. Table A-2. lists these commands and their functions.

Table A-2. Access Port Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>Configure system remote support modem port.</td>
</tr>
<tr>
<td>CO</td>
<td>Returns console from control mode to console mode.</td>
</tr>
<tr>
<td>DI</td>
<td>Disconnects line to remote console.</td>
</tr>
<tr>
<td>DR</td>
<td>Disables access to the system by a remote console.</td>
</tr>
</tbody>
</table>
Table A-2. Access Port Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS</td>
<td>Disables display of system status line during console mode.</td>
</tr>
<tr>
<td>ER</td>
<td>Enables access by a remote console.</td>
</tr>
<tr>
<td>ES</td>
<td>Enables display of system status line during console mode.</td>
</tr>
<tr>
<td>HE</td>
<td>Displays the help screen.</td>
</tr>
<tr>
<td>RS</td>
<td>Stops all processing, initiates SPU self-test, and loads software from load device if enabled for autoboot.</td>
</tr>
<tr>
<td>SE</td>
<td>Transfers remote terminal from console/control mode to session mode.</td>
</tr>
<tr>
<td>TA</td>
<td>Initiates access port self-test.</td>
</tr>
<tr>
<td>TC</td>
<td>Transfers processor execution to operating-system-specific routine. Initiates a system soft reset.</td>
</tr>
<tr>
<td>TE</td>
<td>Sends messages (up to 80 characters) between local and remote consoles.</td>
</tr>
</tbody>
</table>

Using the AP Help Facility

Obtain online help by entering either HELP or the abbreviated command, HE.

The command issues the following display:

```
CM>HELP
Access Port Revision xxx  m.d.y
```

- **CA** Configure system remote support modem port.
- **CO** Enter console mode.
- **DI** Disconnect line to remote console terminal.
- **DR** Disable access by a remote console terminal (enables session access).
- **DS** Disable display of system status line during console mode.
- **ER** Enable access by a remote console terminal (disables session access).
- **ES** Enable display of system status line during console mode.
- **HE** Display this screen.
- **RS** Stop all processing, initiate SPU Self-Test, load software from load device if enabled for autoboot.
- **SE** Transfer remote terminal from console/control to session mode.
- **TA** Initiate Access Port Self-Test.
- **TC** Transfer processor execution to operating system specific routine.
- **TE** Send message between local and remote console terminals.

In the preceding display, **xxx** is the number of the revision of the operating firmware contained on the AP and **m.d.y** is the month, day and year the firmware revision was released. These identifications are necessary to manage ROM updates in the field if they...
become necessary.

Returning from Control Mode to Console Mode

The access port command, **CO**, returns the console from control mode to console mode. Once returned to console mode, the system console operates in its normal session mode. This command does not generate messages.

Configuring the Access Port

Issuing the AP command, **CA**, allows either the local or remote console operator to reconfigure the baud rate for the remote support modem port, the setting of the T1 RATE line, and the system identification. The AP accepts any configuration, making no judgment on the validity.

Using the **CA** command generates the following prompts:

```
CM>CA  Return
Current remote support modem port configuration:

Bit rate                      9600 bits/sec
Rate Select/CCITT 111         High rate (ON)
System identification:   Joe's Sink and Pipe Shop

Do you wish to change the configuration? (Y/N): Y  Return
Enter your changes. <CR> retains the current value.

Current bit rate is 9600 bits/sec. Select the new bit rate.
(0=300, 1=1200, 2=2400, 3=4800, 4=9600):  Return

Rate Select (CCITT 111) is currently HIGH (ON). Choose the new setting (H=high or ON, L=low or OFF): H  Return

Current System identification:   Joe's Sink and Pipe Shop. New identification (limited to 1 to 24 displayable characters or space for none): Yi's Jug and Bottle Shop  Return
New configuration (takes effect at next remote connection):

Bit rate                      9600 bits/sec
Rate Select/CCITT 111         High rate (ON)
System identification:   Yi's Jug and Bottle Shop

CM>
```

The baud rate for the remote console port can be set to 300, 1200, 2400, 4800, or 9600 bits per second. This should be equal to the speed that is supported by your modem (usually 2400).

The remote console port rate can be turned on or off. **ON** is the high voltage and **OFF** is the low voltage, within the definitions for control lines for both RS-232c and V.28.
Using the Access Port (AP)
Configuring the Console

The system identification is a displayable character ASCII string (24 characters maximum) that is stored on the AP, for the AP's exclusive use. The AP identification has absolutely nothing whatsoever to do with any other system identification stored elsewhere in the SPU. No other entity has access to it, and the AP has no access to any other system identification.

Enter up to 24 characters as the system identification. Characters 00 hex through 1F hex are control characters and are not considered displayable. Entering a space at the system identification prompt deletes the previous identification string.

The new configuration is written to nonvolatile memory (NVM) at the end of command processing. It is not used until the next incoming call is answered and the configuration has been written to NVM. If CA is executed by a remote user and the line is lost, the new configuration is still not in effect and the remote user can redial and pick up the process where the disconnection occurred.

For NVM failure, the configuration uses default parameters. These values are 1200 bits per second, for the bit rate; rate select (CCITT 111) high; and system identification set to the null string.

If, during the configuration of the remote support modem, the AP encounters any unexpected or inappropriate input, it may respond with a combination of the following messages.

- Expecting "Y" or "N" (APERR 11)
- Expecting "H" or "L" (APERR 12)
- String was truncated to 24 characters. (APMSG 04)
- Your selection is outside of the legal range. (APERR 14)

Enabling Remote Console Access

The command ER enables remote access to control and console modes through the remote support modem port. The command is only valid from the system console. ER allows you to set the remote access password, the number of password tries, and single or multiple access.

Using the ER command generates the following prompts:

```
CM> ER  Return

Current remote console access configuration:

Mode:         Multiple
Password:     The quick brown fox
Password faults: 10

Do you wish to change the configuration? (Y/N): Y Return
```

Enter your changes. <CR> retains the current value.

Current mode: Multiple
Select the new setting (S=single, M=multiple): Return
Current password: The quick brown fox
New password (1 to 24 displayable characters or space if no password is to be required): Return
Current password fault limit: 10
New number of password faults (Range: 0-99 or space. Space or 0 will permit unlimited password faults.): 5 Return

New remote console access configuration:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password</td>
<td>The quick brown fox</td>
</tr>
<tr>
<td>Password faults</td>
<td>5</td>
</tr>
</tbody>
</table>

Remote console access is now enabled.

CM>

The new access status settings do not take effect until you finally answer the change query with NO.

If, during the process of updating the access status settings, the AP encounters any unexpected or inappropriate input, it may respond with a combination of the following messages:

- Expecting "Y" or "N" (APERR 11)
- Expecting "S" or "M" (APERR 16)
- String was truncated to 24 characters. (APMSG 04)
- Your selection is outside of the legal range. (APERR 14)
- Command may not be executed by a remote user. (APERR 13)

Upon NVM failure, the following default values are used: remote disabled, multiple access mode, maximum fault limit = 3, no password required.

Sending Messages to Both Consoles

The AP treats all displayable characters following the TE command as a comment. They are displayed but not executed. This allows you to enter a message of up to 80 characters at the master terminal that can be viewed by both consoles. For example, entering:

CM>TE System backup begins in 5 minutes.

displays the message:

System backup begins in 5 minutes.

at the remote console.

Disabling Remote Console Access

Entering DR disables remote access by the remote support modem port to control and console modes.

If the command is successful, the system displays the message:
Remote console access disabled.

NOTE The remote enabled light on the front panel goes out once remote console access is terminated.

Disconnecting the Remote Line

Entering the `DI` command initiates a clean disconnect from the telephone line connected to the remote support modem port. This command is valid only from a remote console. If a local operator attempts to use this command, the system issues a message:

Command may not be executed by a local user. (APERR 15)

The system displays the message, *Remote line is disconnected*, when the line is disconnected.

Connecting the Remote Support Modem to a Session Port

This command is valid from the remote support modem port only.

Entering `SE` causes the remote support modem port to connect through to a session port. If DTR is on, the remote support port’s modem remains connected. The remote support modem is able to initiate a session using a normal connection protocol, as if a new modem connection had just been established. To reenter control mode, the remote support port modem must drop the connection and redial.

Using this command and the port operation, a user at the Response Center is able to use control, console, and session mode without any intervention by the local operator. (The operator must enable remote capability of the system.)

The following message is generated if the local console operator tries to execute the `SE` command:

Command may not be executed by local user. (APERR 15)

Enabling the SPU Hex Status Display

The `ES` command displays the system status line, including the front panel LED codes, on console terminals during console mode. Console terminal performance and software performance may be affected when a remote console is connected to the system.

The operating system writes the LED display every 0.5 seconds.

For a 300-bit per second modem, 60 percent of the available throughput is taken by the writing of the LED code. For a 1200-bit per second modem, 15 percent of the line capacity is used. To minimize the effect, the entire system status line is not displayed. In console mode, the following display is shown:

```plaintext
CODE:  xxxx
```

The status line is placed over the softkey labels. To temporarily view the soft keys display, enter a `Return`.

After successfully executing the command, the following message is displayed:
Disabling the SPU Hex Status Display

Entering DS disables the display of the system status line, including the system front panel hex display codes on the console during console mode. See the ES command for more details.

The system displays a message when the command is successful:

System status display during console mode is disabled.

Hard Resetting the SPU

Issuing the RS command causes the AP to reset the entire SPU, halting all processing and I/O activity with the exception of itself and a few operations that must maintain state even over resets. The AP clears all data from the standard output (SO) and data processing first-in-first-out (DP FIFO) buffers. When the first character arrives from either buffer, the AP returns the console from control mode to console mode.

NOTE

The AP command interpreter is active during the period between command execution and the arrival of characters (on either buffer ports) from the system, though the control mode prompt (CM>) isn’t available.

Executing this command generates messages and prompts essential to resetting the system.

If the AP command interpreter encounters errors or inappropriate input during the reset (RS) process, it may display a combination of the following messages:

 Expecting “Y” or “N” (APERR 11)

 Unable to verify assertion of RESET_SYS backplane signal (APERR 01).

 RESET SYS backplane signal asserted, but unable to verify SPU deassertion of PPON backplane signal (APERR 02).

 PPON not reasserted by SPU after RESET_SYS deassertion (APERR 03).

The last three messages appear as a result of certain failures detected by the AP during the reset process. These messages are key to isolating the cause of the failure of the failed field-replaceable unit.

Once the reset is complete, the system displays the following message:

 SPU hardware was successfully reset. (APMSG 02)

Transferring Control (Soft Reset)

The TC command initiates a transfer of control, or soft reset, of the system.
Using the Access Port (AP)
Configuring the Console

Should an error be encountered during a TC, the system displays following error message:

Unable to verify assertion of TOC_SYS backplane signal (APERR 04).

Testing the AP
Entering TA executes the AP self-test. The system displays a message during self-test:

CM>TA Return

Console data arriving during self-test execution will be lost.

Type Y to confirm your intention to execute AP Self-Test (Y/N): Y

Starting AP Self-Test. Last subtest will be 30.

Executing test number:

00 01 02 03 04 05 06 07 08 09
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30

AP Self-Test passed. (APMSG 01)

If the self-test fails:

AP Self-Test failed subtest xx (APERR 05).

where xx is the number of the test causing the failure. If the self-test hangs, the last number displayed is the failing subtest, provided that the numbers have appeared in numerical order (which is the expected sequence).

During the execution of self-test, some of the test numbers shown above may have the mnemonics NC, NT1H, or NS1H appended to them. Whether or not these appear depends upon the test hood configuration present at the time of test execution.

NOTE
The master terminal after the completion of the self-test is the terminal that was master when the test was initiated.

Using Control Commands
The following section describes additional commands that can be executed with the simultaneous use of the control key.

Entering Control Mode
Both a local and remote user can enter CTRL B to initiate a mode change from console mode to control mode.
Halting Scrolling
Entering CTRL S causes the AP to stop passing characters from its port queues to the consoles. The queues continue to accept characters from the system. The XOFF is not passed to the system port being used for the transfer.

Allowing Scrolling
Entering CTRL Q causes the AP to resume passing characters from its port queues to the consoles if this was previously stopped by XOFF character. The XON is not passed to the system port being used for the transfer.

Entering Escape Characters
The escape character CTRL V nullifies whatever character follows it, except for XON and XOFF characters. Any character following a CTRL V has no effect on AP operation.

Changing Master Consoles
Only one console can operate as the system console at a time. It is referred to as the master. The other, usually the remote terminal, can view data but cannot enter data until it takes control. Break is used to take control back and forth between the system console and an enabled remote console. When the remote console enters Break, it becomes the master console, and vice versa. In order to enter data at the remote terminal, you must press Break.

Interpreting AP Error and Informational Messages
The AP provides two classes of messages. A message that is followed by (APERR XX) is an error message. “XX” indicates the error number. A message that is followed by (APMSG XX) is an informational message, although it can indicate a potential error. Error and informational numbers may be duplicated; for example, there is both an APERR 01 and an APMSG 01.

Error Codes and Error Messages
MESSAGE: Unable to verify assertion of RESET SYS backplane signal (APERR 01)
CAUSE: This message, displayed during execution of the RS command, means that the backplane signal RESET_SYS- is not asserted when the AP attempts to reset the SPU. This error might be caused by any one or a combination of four conditions.
Failure of the AP drive circuitry causes this error to be detected, and the SPU is not reset.
The circuitry that permits the AP to read this line may have failed. If this is the case, the error message is displayed, but the SPU is reset in the proper manner.
The CIO backplane may contain a short between the RESET_SYS- line and another low impedance line that is driving a high-logic level.
Some other device connected to the RESET_SYS- line may be driving a high-logic level that the AP cannot overdrive.

MESSAGE: RESET_SYS backplane signal asserted, but unable to verify SPU deassertion of PPON backplane signal (APERR 02)
Using the Access Port (AP)

Configuring the Console

CAUSE: This message, generated during execution of the RS command, indicates that the PPON backplane signal is not deasserted within 2 seconds after the RESET_SYS– line is asserted.

This error may be caused by three conditions. If the receiver, which senses this state of this line on the AP, has failed, the system displays the message. The SPU resets normally. The AP also resets itself as soon as the RS command has completed, if this is the cause of the failure.

If the wiring between the assembly that receives RESET_SYS– and the AP is defective, neither the SPU nor AP resets.

If the portion of the power system that generates PPON is defective, the SPU does not reset, and the AP probably does not reset.

MESSAGE: PPON not reasserted by SPU after RESET_SYS deassertion (APERR 03)

CAUSE: This message, displayed by the RS command, means that PPON has not reasserted within 2 seconds after being deasserted. Once this occurs, the AP becomes insensitive to being reset by the deassertion of PPON.

This error is most likely the result of a fault in the assembly that generates the PPON signal.

MESSAGE: Unable to verify assertion of TOC_SYS backplane signal (APERR 04)

CAUSE: Information not currently available.

MESSAGE: AP Self-Test failed subtest xx (APERR 05)

CAUSE: This message is displayed when a failure occurs during the execution of AP self-test. XX gives the decimal number of the failing subtest.

MESSAGE: AP failed subtest xx of idle Self-Test. (APERR 06)

CAUSE: This message is displayed when the idle self-test fails.

Since idle self-test executes whenever the AP microprocessor has idle time, this message may appear at any time, in any AP context, including during console mode operation.

MESSAGE: AP failed subtest xx of prior idle Self-Test. (APERR 07)

CAUSE: This message is displayed when a switch in modes is made after idle self-test has failed previously.

MESSAGE: Permitted accesses to NVM exceeded. (APERR 08)

CAUSE: This message is displayed each time that the AP accesses NVM after the counter in NVM indicates that the permitted number of accesses to the last block of NVM has been exhausted. The AP should be replaced at the next visit by HP service personnel. The NVM may survive for up to 20,000 more accesses after this message begins to occur, or it may fail almost immediately.

MESSAGE: CRC error on NVM. (APERR 09)

CAUSE: This message is displayed when the AP has exhausted the permitted number of accesses to all blocks of NVM. The default settings for NVM parameters are used. Notify your HP service personnel. The AP must be replaced.

MESSAGE: Illegal command, type HE for help. (APERR 10)
CAUSE: The first two characters entered in a command line for the AP command interpreter are not an AP command. Help displays all legal commands.

MESSAGE: Expecting “Y” or “N” (APERR 11)

CAUSE: The AP is expecting one of the letters Y or N, in either uppercase or lowercase, as the reply to the query displayed on the screen.

MESSAGE: Expecting “H” or “L” (APERR 12)

CAUSE: The AP is expecting one of the letters H or L, in either uppercase or lowercase, as the reply to the query displayed on the screen. H stands for high, and if chosen, causes the specified signal to be set to the high voltage level, which is nominally +9 Volts referenced to ground. L stands for low, and if chosen, causes the specified signal to be set to the low voltage level, which is nominally -9 volts referenced to ground.

MESSAGE: Command may not be executed by a remote user. (APERR 13)

CAUSE: The command entered is a valid AP command, but is intended for use from the local console port (port T0) only. No action has been taken.

MESSAGE: Your selection is outside of the legal range. (APERR 14)

CAUSE: Either numeric data has been entered when alphabetic input is expected (or vice versa), or the value of numeric data entered is outside of the permissible range of values.

MESSAGE: Command may not be executed by a local user. (APERR 15)

CAUSE: This command is a valid AP command, but is intended for use from the remote support modem port (port T1) only. No action has been taken.

MESSAGE: Expecting “S” or “M” (APERR 16)

CAUSE: The only permissible input at this time is the letter S for single or the letter M for multiple. They may be entered either in uppercase or lowercase.

MESSAGE: Syntax error. (APERR 17)

CAUSE: Any error other than those covered by error messages APERR 18 and APERR 19 when using the DM, AM, DD, or AD commands, causes this error message.

MESSAGE: Illegal hexadecimal entry. (APERR 18)

CAUSE: If any of the hex parameters entered with the DM, AM, DD, or AD commands are not valid hex numbers, this error message is be output.

MESSAGE: Illegal address or address range. (APERR 19)

CAUSE: Attempting to address outside the legal range of addresses with the DM, AM, DD, or AD commands causes this error message to be given.

Informational Messages

MESSAGE: AP self-test passed. (APMSG 01)

CAUSE: AP self-test was executed, and it has passed. The message is accurate in almost all cases; however, it is possible that the message will appear without the test having executed to completion. This case can be detected by observing whether the full complement of subtests has been executed in the proper order.
Using the Access Port (AP)
Configuring the Console

AP self-test detects only approximately 70 percent of the faults on the AP.

MESSAGE: SPU hardware was successfully reset. (APMSG 02)

CAUSE: This message indicates that the AP did not enter the three possible error states. It does not mean that the AP has somehow detected that the processor has restarted or that it was cleared, for example. The AP has no way to determine the internal state of any other assembly in the SPU.

MESSAGE: Console terminal not set to 9600 bits per second. Console port will operate at xxxx bits per second. (APMSG 03)

CAUSE: The AP senses the setting of the console connected to local console port using ENQ/ACK. The console should be operating at 9600 bits per second. If it is operating at 4800, 2400, 1200, 600 or 300 bits per second, the AP senses this and operates the port at this baud rate.

If the above message appears on the terminal screen, the AP and the terminal are both set for the same baud rate. If the terminal is accidentally set for other than 9600, the above-referenced procedure should be followed to reset the terminal and AP for 9600. If the terminal is set for 9600, the AP or the terminal is defective.

MESSAGE: String was truncated to 24 characters. (APMSG 04)

CAUSE: You can enter only up to 24 displayable characters in the answer to the query on the screen. All characters past the twenty-fourth were discarded. No action is necessary if the resulting truncated string is acceptable as the answer to the query. If the resulting string is not acceptable, continue command execution until you are again prompted for the string and enter the new string.

MESSAGE: AP configuration lost. Use CA and ER commands to recover. (APMSG 05)

CAUSE: If this message recurs after each reset, power on, or self-test execution, the AP is defective.
B Startup, Dump, and Shutdown Listings

This appendix lists or references the messages received at the console during successful ISL startup (START), dump (DUMP), and shutdown (SHUTDOWN) operations.
START Sequence

Refer to Chapter 3, “System Startup Functions,” for information on the steps involved in the startup process.
DUMP Sequence

Refer to Chapter 3, “System Startup Functions,” for information on the steps involved in the DUMP process. See Example 3-7 for the output from a DUMP sequence.

CAUTION Do not use the RS command from the console or push the reset button on the front panel to reset the system for a dump. Hard resetting the system initiates a processor self-test that invalidates dump data.
Shutdown Sequence

This sequence, unlike the previous four, begins at the MPE prompt. (Presumably, the system is up and running before it is shut down.) Refer to Chapter 9, “Halting System Activity,” for information on the steps involved in shutting down the system.

The following represents a shutdown sequence for the N-Class systems received at the console. Sequences from other installations may vary.

```
:TELL @S;SHUTDOWN IN 15 MINUTES. PLEASE LOG OFF.
:LIMIT 0,0
:JOBFENCE 14
:SHOWOUT SP

NO SUCH FILE(S)

:WARN @S;SYSTEM SHUTDOWN IN 2 MINUTES. PLEASE LOG OFF.
:SHOWJOB JOB=@S

JOBNUM STATE IPRI JIN JLIST INTRODUCED JOB NAME
#S669 EXEC 20 20 WED 8:22A OPERATOR.SYS

1 JOBS (DISPLAYED)
0 INTRO
0 WAIT; INCL 0 DEFERRED
1 EXEC; INCL 1 SESSIONS
0 SUSP
JOBFENCE= 14; JLIMIT=0; SLIMIT=0

:WARN @S;SYSTEM SHUTDOWN IN 1 MINUTE. ALL USERS WILL BE LOGGED OFF AT THAT TIME.
:CTRL A
=S:SHUTDOWN

Shutdown of operating system begins. (Shut 1)
Shutdown of user processes begins. (Shut 2)
Shutdown of jobs & sessions begins. (Shut 3)
Spoolers notified of a shutdown. (Shut 16)
13:11/38/The Spooling system has been shutdown.
Shutdown of system processes begins. (Shut 4)
Shutdown of operating system complete. (Shut 6)
```
C Reading Stable Storage and Nonvolatile Memory

Certain types of system errors and failures may indicate problems with the stable storage or nonvolatile memory (NVM). In these cases, your HP customer engineer may request that you note the contents of certain locations in these storages. ISL provides two commands, READSS and READNVM, that read the contents of storage addresses in stable storage and nonvolatile memory (NVM).

NOTE NVM references are not applicable to N-Class and A-Class systems
Reading Stable Storage Contents

Stable storage contains the boot path information along with other critical file system parameters in a minimum area of 96 bytes of high-reliability memory. The storage maintains the critical parameters even if the storage card is removed from the backplane. After the initial memory controller is initialized, the processor-dependent code (PDC) accesses stable storage to determine the boot device and console selection process.

The stable storage contents are allocated as shown in Figure C-1.

Figure C-1. Stable Storage Contents

<table>
<thead>
<tr>
<th>Hexadecimal Byte Address</th>
<th>Decimal Byte Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>X 00000000</td>
<td>0</td>
</tr>
<tr>
<td>X 00000020</td>
<td>32</td>
</tr>
<tr>
<td>X 00000040</td>
<td>64</td>
</tr>
<tr>
<td>X 00000060</td>
<td>96</td>
</tr>
<tr>
<td>X 00000080</td>
<td>128</td>
</tr>
<tr>
<td>X 000000A0</td>
<td>160</td>
</tr>
<tr>
<td>X 000000E0</td>
<td>224</td>
</tr>
</tbody>
</table>

NOTE Byte addresses are numbered beginning with 0. For example, 0 is the first byte, 1 is the second.

Decimal byte address 0 contains the status of the autoboot and autosearch flags. The byte contains two hexadecimal values. The first two binary digits of the first value show the flag status as either ON (1) or OFF (0). Byte 7, obtained by reading decimal address 4, contains
the logical module index.

The console path and alternate paths are stored in the same format as the primary boot path. Unlike the primary boot path, the first byte of the first word of the console and alternate boot paths is set to hex 00. The autoboot and autosearch flags are not stored with these paths. To read one word (4 bytes) of stable storage, use the ISL command \texttt{READSS}:

\begin{verbatim}
ISL> READSS x Return

or

ISL> READSS Return

Input SS address: 4

Address 4 contains 0x00000200
\end{verbatim}
Reading Nonvolatile Memory (NVM)

(Not applicable to N-Class and A-Class) NVM stores system activity parameters, including a circular queue of the last six ISL utilities executed, which is useful as a diagnostic aid in the event of a system crash or failure.

NVM contains initialization information in a 92-byte block starting at decimal byte address 36. NVM stores this information as shown in Figure C-2.

Figure C-2. NVM Contents

<table>
<thead>
<tr>
<th>Hexadecimal Byte Address</th>
<th>Decimal Byte Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>X 00000024</td>
<td>36</td>
</tr>
<tr>
<td>X 00000044</td>
<td>68</td>
</tr>
<tr>
<td>X 00000048</td>
<td>72</td>
</tr>
<tr>
<td>X 0000004C</td>
<td>76</td>
</tr>
<tr>
<td>X 00000054</td>
<td>84</td>
</tr>
<tr>
<td>X 0000005C</td>
<td>92</td>
</tr>
<tr>
<td>X 00000064</td>
<td>100</td>
</tr>
<tr>
<td>X 0000006C</td>
<td>108</td>
</tr>
<tr>
<td>X 00000074</td>
<td>116</td>
</tr>
<tr>
<td>X 0000007C</td>
<td>124</td>
</tr>
<tr>
<td>X 00000080</td>
<td>128</td>
</tr>
</tbody>
</table>

To read an NVM location, enter the ISL `READNVM` command and enter the hexadecimal or
decimal address. The output is always in hexadecimal. In the following examples, addresses are referred to in decimal notation and the output is in hexadecimal notation.

The last boot path, starting at byte address decimal 36, contains the status of the autoboot and autosearch flags during the boot sequence.

Address decimal 68 contains the ISL revision number in ASCII.

ISL> READNVM 68

Address 68 contains 0x32363334 *** ISL Revision 2738 ***

The TIMESTAMP is in seconds since 1/1/70. Locations 76 through 123 contain the names of the utilities booted. They are placed into a circular queue. The pointer at location 124 (first two digits) is positioned to the last utility executed. The pointer ranges from 1–6 (decimal) or 01–06 (hexadecimal), indicating which utility (1–6 — top to bottom on Figure C-2.) was last executed.

ISL> READNVM 124

Address 124 contains 0x030600AC

(The last six digits vary)

The first two digits, 03, indicate that the pointer is positioned to the third utility name location (decimal address 92) in the queue.

Read location 92 to find the hexadecimal representation of the name:

ISL> READNVM 92

Address 92 contains 0x53544152

(53=S 54=T 41=A 52=R which spells out STAR)

Since each location is limited to four characters, additional characters are located in the next word:

ISL> READNVM 96

Address 96 contains 0x54202020

(54=T 20=Blank which adds the last T for start)
Table C-1. lists the ISL utility names and the hexadecimal representation for both uppercase and lowercase spellings.

Table C-1. Codes for ISL Utility Names

<table>
<thead>
<tr>
<th>Utility</th>
<th>Uppercase</th>
<th>Lowercase</th>
</tr>
</thead>
<tbody>
<tr>
<td>START</td>
<td>53 54 41 52 54</td>
<td>73 74 61 72 74</td>
</tr>
<tr>
<td>UPDATE</td>
<td>55 50 44 41 54 45</td>
<td>75 70 64 61 74 65</td>
</tr>
<tr>
<td>INSTALL</td>
<td>49 4E 53 54 41 4C 4C</td>
<td>69 6E 73 73 61 6C 6C</td>
</tr>
<tr>
<td>DUMP</td>
<td>44 55 4D 50</td>
<td>64 75 6D 70</td>
</tr>
</tbody>
</table>
D Default Configurations Used by INSTALL and UPDATE

The INSTALL utility on a factory system load tape replaces a system's configuration files with a default configuration. These defaults allow the system manager or system supervisor to boot the system to a fully operational level. You should then alter the functioning configuration to meet your system's needs using SYSGEN.

START uses CONFIG as its default configuration group. Before a system can actually use the START command default to start the system, however, a functioning set of configuration files must reside in the configuration group CONFIG.

Since multiple configuration groups reside on a factory system load tape, CONFIG is empty on disk after an INSTALL until the system manager copies an appropriate configuration group into it using SYSGEN. The following is a list of appropriate configuration groups depending upon which HP e3000 system you are working with.

The next sections show portions of the default input and output (I/O) configurations as shown in Table D-1.

Table D-1. Default Configurations for the HP e3000

<table>
<thead>
<tr>
<th>Group Name</th>
<th>System Description</th>
<th>Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONF9X71</td>
<td>9X7 with 1 disk drive</td>
<td>SCSI</td>
</tr>
<tr>
<td>CONF9X72</td>
<td>9X7 with 2 disk drives</td>
<td>SCSI</td>
</tr>
<tr>
<td>CONF9X73</td>
<td>9X7 with 3 disk drives</td>
<td>SCSI</td>
</tr>
<tr>
<td>CONF9X74</td>
<td>9X7 with 4 disk drives</td>
<td>SCSI</td>
</tr>
<tr>
<td>CONF9X75</td>
<td>9X7 with 3 disk drives 2 DDS devices</td>
<td>SCSI</td>
</tr>
<tr>
<td>CONFACL1</td>
<td>A-Class with 2 internal disks</td>
<td>PCI/SCSI</td>
</tr>
<tr>
<td>CONFACL2</td>
<td>A-Class with external disk</td>
<td>PCI/SCSI</td>
</tr>
<tr>
<td>CONFNCL1</td>
<td>N-Class with 2 internal disks</td>
<td>PCI/SCSI</td>
</tr>
<tr>
<td>CONFNCL2</td>
<td>N-Class with external disk</td>
<td>PCI/SCSI</td>
</tr>
<tr>
<td>CONFIG9X8</td>
<td>9X8LX or 9X8RX</td>
<td>SCSI</td>
</tr>
<tr>
<td>CONFIG920</td>
<td>920</td>
<td>HP-IB</td>
</tr>
<tr>
<td>CONFIG922</td>
<td>922 or 922LX or 922RX</td>
<td>HP-IB</td>
</tr>
<tr>
<td>CONFIG925</td>
<td>925 or 925LX</td>
<td>HP-IB</td>
</tr>
<tr>
<td>CONF925</td>
<td>925 with CIO expander bay</td>
<td>HP-IB</td>
</tr>
<tr>
<td>ALINK925</td>
<td>925 or 925LX</td>
<td>HP-FL</td>
</tr>
<tr>
<td>ALINE925</td>
<td>925 with CIO expander bay</td>
<td>HP-FL and HB-IB</td>
</tr>
</tbody>
</table>
Table D-1. Default Configurations for the HP e3000

<table>
<thead>
<tr>
<th>Group Name</th>
<th>System Description</th>
<th>Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIG932</td>
<td>932</td>
<td>HP-IB</td>
</tr>
<tr>
<td>ALINK932</td>
<td>932</td>
<td>HP-FL and HP-IB</td>
</tr>
<tr>
<td>CONFIG935</td>
<td>935 with CIO expander bay</td>
<td>HP-IB</td>
</tr>
<tr>
<td>ALINK935</td>
<td>935 with CIO expander bay</td>
<td>HP-FL and HB-IB</td>
</tr>
<tr>
<td>CONFIG948</td>
<td>948</td>
<td>HP-IB</td>
</tr>
<tr>
<td>ALINK948</td>
<td>948</td>
<td>HP-FL and HP-IB</td>
</tr>
<tr>
<td>CONFIG949</td>
<td>949 with CIO expander bay</td>
<td>HP-IB</td>
</tr>
<tr>
<td>ALINK949</td>
<td>949 with CIO expander bay</td>
<td>HP-FL and HB-IB</td>
</tr>
<tr>
<td>CONFIG950</td>
<td>950</td>
<td>HB-IB</td>
</tr>
<tr>
<td>ALINK950</td>
<td>950</td>
<td>HP-FL and HB-IB</td>
</tr>
<tr>
<td>CONFIG955</td>
<td>955</td>
<td>HB-IB</td>
</tr>
<tr>
<td>ALINK955</td>
<td>955</td>
<td>HP-FL and HB-IB</td>
</tr>
<tr>
<td>CONFIG958</td>
<td>958</td>
<td>HB-IB</td>
</tr>
<tr>
<td>ALINK958</td>
<td>958</td>
<td>HP-FL and HB-IB</td>
</tr>
<tr>
<td>CONFIG960</td>
<td>960</td>
<td>HB-IB</td>
</tr>
<tr>
<td>CONFSCS0</td>
<td>960</td>
<td>SCSI</td>
</tr>
<tr>
<td>ALINK960</td>
<td>960</td>
<td>HP-FL and HB-IB</td>
</tr>
<tr>
<td>CONFIG980</td>
<td>980</td>
<td>HB-IB</td>
</tr>
<tr>
<td>ALINK980</td>
<td>980</td>
<td>HP-FL and HB-IB</td>
</tr>
<tr>
<td>CONFIG990</td>
<td>990</td>
<td>PB-FL and SCSI</td>
</tr>
<tr>
<td>ALINK990</td>
<td>990</td>
<td>PB-FL</td>
</tr>
<tr>
<td>CONFIG991</td>
<td>991</td>
<td>PB-FL and SCSI</td>
</tr>
<tr>
<td>ALINK991</td>
<td>991</td>
<td>PB-FL</td>
</tr>
<tr>
<td>CONFIG992</td>
<td>992</td>
<td>PB-FL and SCSI</td>
</tr>
<tr>
<td>ALINK992</td>
<td>992</td>
<td>PB-FL</td>
</tr>
<tr>
<td>CONFIG995</td>
<td>995</td>
<td>PB-FL and SCSI</td>
</tr>
<tr>
<td>ALINK995</td>
<td>995</td>
<td>PB-FL</td>
</tr>
</tbody>
</table>

NOTE: The PB-FL card is the FL card that is used in precision bus systems, such as 99X systems.
NOTE For specific information on how to start the system with the default configuration files, as well as possible additional default configuration files, refer to the HP e3000 MPE/iX System Software Maintenance Manual.
Copying Default Configuration File Groups

This section discusses renaming the default configuration files groups used by the UPDATE and INSTALL utilities mentioned in Chapter 3, “System Startup Functions.”

Overview

The INSTALL utility replaces a system’s configuration files with a default configuration. These defaults allow the system manager or system operator to boot the system to a fully operational level. They may then alter the functioning configuration to meet their system’s needs.

The UPDATE utility optionally replaces a system’s configuration files with defaults. During an update, the system manager or system operator has the choice of whether or not to use a configuration stored on the system volume or to replace the current configuration with the default.

Before a system can properly use its START command, a functioning set of configuration files must reside in the configuration group CONFIG. The START command uses CONFIG as its default configuration group.

Since multiple configuration groups reside on a system load tape (SLT), CONFIG is empty until the system manager copies an appropriate configuration group into it.
Using SYSGEN to Copy the Files

You must use SYSGEN to copy configuration groups. Using other methods to copy configuration files removes key elements and corrupts the files.

To copy a default configuration group into the configuration group CONFIG, follow the instructions outlined below:

1. Activate SYSGEN.

 Entering SYSGEN activates SYSGEN’s global module.

   ```
   SYSGEN version B.06.01 : catalog version B.06.02 FRI, MAY 20, 1988
   Copyright 1987 Hewlett-Packard Co. All Rights Reserved
   ** First level command **
   io log (lo) misc (mi) spu (sp)
   sysfile (sy)
   basegroup (ba) keep (ke) permyes (pe) show (sh)
   tape (ta)
   clear (cl) (c) exit (ex) (e) help (he) (h) oclose (oc)
   redo
   ```

2. Specify the base group on which to operate.

 Specify the group that more closely matches your system. Enter:

   ```
   sysgen> BASEGROUP basgroupname
   ```

3. Modify the configuration if necessary.

 If your system requires a configuration other than that provided by default, use the IO configurator to modify the current base group to meet your system’s requirements. Refer to the chapter in this manual, that discusses the types of changes that you must make. After making any changes, hold them (issue the HOLD command in each configurator used to make changes), and return to SYSGEN’s global module.

4. Save the configuration to disk as CONFIG.

 After you have completed making changes, if any, save the configuration to the CONFIG group. Enter:

   ```
   sysgen> KEEP CONFIG
   ```
5. Generate a system load tape (SLT) if desired.

 To create an SLT that contains the new configuration, use `CONFIG` as the base group, and save it to tape, as discussed in Chapter 3, “System Startup Functions.”

6. Use the new configuration and restart the system.

 If you modified the configuration and now desire to implement it on the system, shut down and restart the system.

 To shut down the system enter:

 `CTRL A`

 `=SHUTDOWN`

7. The system responds by listing shutdown messages:

 Shutdown of operating system begins. (Shut 1)
 Shutdown of user processes begins. (Shut 2)
 Shutdown of jobs & sessions begins. (Shut 3)
 Spoolers notified of a shutdown. (Shut 16)
 13:11/38/The Spooling system has been shutdown.
 Shutdown of system processes begins. (Shut 4)
 ShutDown of operating system complete. (Shut 6)

8. Reset the system using RS or TC. Restart it by specifying `NORECOVERY`.

 `ISL> START NORECOVERY`

9. Prepare the system for normal production.

 You may wish to check certain items to ensure that the system is ready for production. These items can include:

 - jobfence parameters
 - limit parameters
 - LAN status
E Verifying Attached Devices

This section discusses using the initial system loader’s ODE utility to verify which devices are attached and configured to a HP e3000 computer system.

Overview

SYSGEN provides utilities for listing the configured paths and associated devices of a system. It does not, however, provide a utility for listing the devices actually attached to the system. (A valid configured path does not require an associated device.) The initial system loader (ISL) provides the ODE utility for locating the devices attached to a system.

A list of attached peripherals aids the system manager in assessing a system's needs, deciding where (on which I/O paths) to add or remove peripheral devices, resolving I/O path conflicts (as with SYSGEN and NMMGR), and restoring or copying a system's configuration.

Displaying Configured Devices

ODE is a utility that is located in the ISL boot directory of an HP e3000 computer system. It can be launched only from ISL, which indicates that the system is down.

When running with default options, ODE running mapper or mapper2 performs the following operations:

- Displays the current configuration of the processor, including the presence of coprocessor boards, analyzer cards, memory sizes of cache and translation look-aside buffer (TLB) cards, the processor model number, and the processor-dependent code (PDC) firmware revision.
- Checks all possible I/O paths to determine if a component is present, and identifies every component (such as a module, bus converter, adapter, device, or unit.)
- Displays a table showing all configured components.
- Performs self-test and/or loopback tests on all components with self-test and/or loopback capabilities.
- Does not test any devices (terminals, data communication lines, or other serial devices) connected to external ports of the terminal multiplexer.

The loopback test performs component-dependent loopback tests where feasible. The result of this test is reported as pass, fail, unimplemented, or untestable.
Verifying Attached Devices
Displaying Configured Devices

The self-test initiates the internal self-test of each component that has a self-test routine. The result of this test is reported as pass, fail, unimplemented, or untestable.

Running ODE
To run ODE:

1. Remove all users from the system.
 If your system is not currently in use, skip to step 2.
 a. Log on at the system console as MANAGER.SYS. Enter:

 :HELLO MANAGER[/userpass].SYS[/acctpass]
 b. Tell users of the approaching shutdown.
 Notice that entering ISL makes the system inaccessible to users. Use the TELL command to alert users (except those in quiet mode) to the impending system shutdown. Ten minutes beforehand, ask users to log off. Enter:

 :TELL @S; SYSTEM SHUTDOWN IN 10 MIN. PLEASE LOG OFF.
 c. Prevent new system activity. Enter:

 :LIMIT 0,0
 :JOBFENCE 14
 The command LIMIT 0,0 limits the number of concurrently running jobs and sessions. The two parameters \(x \), \(x \) define the allowed number of jobs and sessions, respectively.
 The command JOBFENCE defines the minimum input priority that a job or session must have to execute. The parameter, 14, raises the jobfence to the highest level.
 d. Warn users five minutes prior to the system shutdown to end their sessions. Use the WARN command to alert all sessions (including those in quiet mode) to the shutdown. Enter:

 :WARN @S; SYSTEM LOSS IN 5 MIN. PLEASE LOG OFF.
 e. Locate all jobs and sessions still in progress or scheduled. Enter:

 :SHOWJOB JOB=@J
 :SHOWJOB JOB=@S
 The command SHOWJOB displays the status information about jobs or sessions.
 f. Abort jobs and sessions still executing. Enter:

 :ABORTJOB #Jnnn (#Jnnn is the number for each job)
 :ABORTJOB #Snnn (#Snnn is the number for each session)

2. Reset the system. Enter:

 :CTRL A
 =SHUTDOWN
3. Once the system issues the final shutdown message:

 Shutdown of operating system complete. (Shut 6)

Enter:

:CTRL B

CM> SP

Reset messages appear at the console while the system runs its self-test.

If autoboot is enabled on your system, interrupt it so that you receive the ISL prompt (ISL>). Refer to Chapter 3, “System Startup Functions,” for information on interrupting an autoboot sequence.

4. Type the following to run ODE:

 ISL>ODE

5. Initiate the mapper2 module:

 ISL>RUN mapper2

 mapper2 displays the current configuration (see Example E-1 for an example display).

Example E-1. Mapper2

Main Menu: Enter command or menu > bo pri
Interact with IPL (Y, N, or Cancel)?> yy

Booting...
Boot IO Dependent Code (IODC) revision 1

HARD Booted.
MMSAVE Version 2.5
DUMPAREA found, save main memory to disc
ISL loaded

ISL Revision A.00.43 Apr 12, 2000

ISL> ode

****** ******
Verifying Attached Devices
Displaying Configured Devices

****** Offline Diagnostic Environment ******

****** (C) Copyright Hewlett-Packard Co 1993-2000 ******
****** All Rights Reserved ******

****** HP shall not be liable for any damages resulting from the ******
****** use of this program. ******

****** TC Version A.02.22 ******
****** SysLib Version A.00.75 ******
****** Loader Version A.00.61 ******
****** Mapfile Version A.01.27 ******

Type HELP for command information.
ODE>run mapper2

****** MAPPER2 ******

****** Copyright (C) 1998-2000 by Hewlett-Packard Company ******
****** All Rights Reserved ******

****** HP shall not be liable for any damages resulting from the ******
****** use of this program. ******

****** Version B.00.17 ******

Type HELP for command information.

STARTING EXECUTION OF MAPPER2
Processor Identification:

Hardware Model: 5CCH, Revision: 0
Software Model: 4H, Revision: 0
Hardware ID: 0, Software ID: 693309366 (unsigned decimal)
HP-UX Model String: 9000/800/N4000-44
MPE/XL Model String: 9000/900 Series MPE MPE MPE ...

Processor Board Revisions:

CPU - CPU Chip: 768
PDC - Processor Dependent Code: 42.31

Cache and TLB Sizes:

Instruction Cache: 512 K bytes, Instruction TLB: 160 entries
Data Cache: 1024 K bytes, Data TLB: 160 entries

Co-processors:

Floating Point Co-processor(s) installed

Configuring the System...
I/O Configuration:

<table>
<thead>
<tr>
<th>Path</th>
<th>Component Name</th>
<th>Type</th>
<th>HW</th>
<th>SW</th>
<th>Revisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>IKE I/O Bus Converter</td>
<td>7H</td>
<td>803H</td>
<td>CH</td>
<td>0</td>
</tr>
<tr>
<td>0/0</td>
<td>Elroy PCI Bridge</td>
<td>DH</td>
<td>782H</td>
<td>AH</td>
<td>0</td>
</tr>
<tr>
<td>0/0/0</td>
<td>Ethernet Controller</td>
<td>1011H</td>
<td>0019H</td>
<td>103CH</td>
<td>104FH</td>
</tr>
<tr>
<td>0/0/1</td>
<td>Symbios SCSI Controller</td>
<td>1000H</td>
<td>000CH</td>
<td>0000H</td>
<td>0000H</td>
</tr>
<tr>
<td>0/0/1/0.0</td>
<td>TOSHIBA5401TA CD-ROM drive</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3115</td>
</tr>
<tr>
<td>0/0/1/0.2.0</td>
<td>HPC1537A tape drive</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>HP02</td>
</tr>
<tr>
<td>0/0/1/0.5.0</td>
<td>SEAGATE ST34573N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>HP11</td>
</tr>
<tr>
<td>0/0/2/0</td>
<td>Symbios SCSI Controller</td>
<td>1000H</td>
<td>000FH</td>
<td>0000H</td>
<td>0000H</td>
</tr>
<tr>
<td>0/0/2/0.6.0</td>
<td>SEAGATE ST39103LC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>HP01</td>
</tr>
<tr>
<td>0/0/2/1</td>
<td>Symbios SCSI Controller</td>
<td>1000H</td>
<td>000FH</td>
<td>0000H</td>
<td>0000H</td>
</tr>
<tr>
<td>0/0/4/0</td>
<td>Serial Controller</td>
<td>103CH</td>
<td>1048H</td>
<td>103CH</td>
<td>1049H</td>
</tr>
</tbody>
</table>
Verifying Attached Devices

Displaying Configured Devices

<table>
<thead>
<tr>
<th>Slot</th>
<th>Device Type</th>
<th>Model</th>
<th>Register 1</th>
<th>Register 2</th>
<th>Register 3</th>
<th>Register 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/0/5/0</td>
<td>Serial Controller</td>
<td></td>
<td>103CH</td>
<td>1048H</td>
<td>103CH</td>
<td>104AH</td>
</tr>
<tr>
<td>0/1</td>
<td>Elroy PCI Bridge</td>
<td></td>
<td>DH</td>
<td>782H</td>
<td>AH</td>
<td>0</td>
</tr>
<tr>
<td>0/1/0/0</td>
<td>Fibre Channel Controller</td>
<td></td>
<td>103CH</td>
<td>1028H</td>
<td>FFFFH</td>
<td>FFFFH</td>
</tr>
<tr>
<td>0/2</td>
<td>Elroy PCI Bridge</td>
<td></td>
<td>DH</td>
<td>782H</td>
<td>AH</td>
<td>0</td>
</tr>
<tr>
<td>0/4</td>
<td>Elroy PCI Bridge</td>
<td></td>
<td>DH</td>
<td>782H</td>
<td>AH</td>
<td>0</td>
</tr>
<tr>
<td>0/4/0/0</td>
<td>PCI->PCI Bridge</td>
<td></td>
<td>103CH</td>
<td>1047H</td>
<td>0000H</td>
<td>0000H</td>
</tr>
<tr>
<td>0/4/0/1</td>
<td>Network Controller</td>
<td></td>
<td>103CH</td>
<td>1047H</td>
<td>0000H</td>
<td>0000H</td>
</tr>
<tr>
<td>0/5</td>
<td>Elroy PCI Bridge</td>
<td></td>
<td>DH</td>
<td>782H</td>
<td>AH</td>
<td>0</td>
</tr>
<tr>
<td>0/8</td>
<td>Elroy PCI Bridge</td>
<td></td>
<td>DH</td>
<td>782H</td>
<td>AH</td>
<td>0</td>
</tr>
<tr>
<td>0/10</td>
<td>Elroy PCI Bridge</td>
<td></td>
<td>DH</td>
<td>782H</td>
<td>AH</td>
<td>0</td>
</tr>
<tr>
<td>0/10/0/0</td>
<td>Symbios SCSI Controller</td>
<td></td>
<td>1000H</td>
<td>000FH</td>
<td>0000H</td>
<td>0000H</td>
</tr>
<tr>
<td>0/12</td>
<td>Elroy PCI Bridge</td>
<td></td>
<td>DH</td>
<td>782H</td>
<td>AH</td>
<td>0</td>
</tr>
<tr>
<td>0/12/0/0</td>
<td>Ethernet Controller</td>
<td></td>
<td>1011H</td>
<td>0019H</td>
<td>103CH</td>
<td>1066H</td>
</tr>
<tr>
<td>1</td>
<td>IKE I/O Bus Converter</td>
<td></td>
<td>7H</td>
<td>803H</td>
<td>CH</td>
<td>0</td>
</tr>
<tr>
<td>1/0</td>
<td>Elroy PCI Bridge</td>
<td></td>
<td>DH</td>
<td>782H</td>
<td>AH</td>
<td>0</td>
</tr>
<tr>
<td>1/0/0/0</td>
<td>Symbios SCSI Controller</td>
<td></td>
<td>1000H</td>
<td>000FH</td>
<td>1000H</td>
<td>1000H</td>
</tr>
<tr>
<td>1/2</td>
<td>Elroy PCI Bridge</td>
<td></td>
<td>DH</td>
<td>782H</td>
<td>AH</td>
<td>0</td>
</tr>
<tr>
<td>1/4</td>
<td>Elroy PCI Bridge</td>
<td></td>
<td>DH</td>
<td>782H</td>
<td>AH</td>
<td>0</td>
</tr>
<tr>
<td>1/8</td>
<td>Elroy PCI Bridge</td>
<td></td>
<td>DH</td>
<td>782H</td>
<td>AH</td>
<td>0</td>
</tr>
<tr>
<td>1/10</td>
<td>Elroy PCI Bridge</td>
<td></td>
<td>DH</td>
<td>782H</td>
<td>AH</td>
<td>0</td>
</tr>
<tr>
<td>1/12</td>
<td>Elroy PCI Bridge</td>
<td></td>
<td>DH</td>
<td>782H</td>
<td>AH</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>DEW Bus Converter</td>
<td></td>
<td>7H</td>
<td>584H</td>
<td>CH</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>Processor</td>
<td></td>
<td>0H</td>
<td>5CCH</td>
<td>4H</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>DEW Bus Converter</td>
<td></td>
<td>7H</td>
<td>584H</td>
<td>CH</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>Processor</td>
<td></td>
<td>0H</td>
<td>5CCH</td>
<td>4H</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>DEW Bus Converter</td>
<td></td>
<td>7H</td>
<td>584H</td>
<td>CH</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>Processor</td>
<td></td>
<td>0H</td>
<td>5CCH</td>
<td>4H</td>
<td>0</td>
</tr>
<tr>
<td>192</td>
<td>Memory (2 Gbytes)</td>
<td></td>
<td>1H</td>
<td>90H</td>
<td>9H</td>
<td>0</td>
</tr>
</tbody>
</table>

Ext --> 0 Absent 1 Absent 2 Installed 3 Absent

Slot 0a - - - - 1024M Active - -

Slot 0b - - - - 1024M Active - -

Slot 1a - - - - - - - -
Verifying Attached Devices
Displaying Configured Devices

Slot 1b - - - - - - - -
Slot 2a - - - - - - - -
Slot 2b - - - - - - - -
Slot 3a - - - - - - - -
Slot 3b - - - - - - - -

Resetting the Boot Device...
Done.

Exiting...

RUN COMPLETED.
ODE>

Exiting mapper2
To exit mapper2 type:
 CM> EXIT

Exiting ODE
To exit ODE type:
 CM> EXIT
Verifying Attached Devices
Displaying Configured Devices
Adding Peripherals to a System

Before a device can be used on your system you must define a pathway, consisting of various interface components, from the system to the device. Each pathway component, and the device itself, is defined (or configured) by specifying the IO Configurator `APATH` or `ADEV` command, the component's address, and the component's identifier.

This section also provides a procedure for configuring additional other devices.

For additional information on the commands used in these procedures, refer to Chapter 5, “Modifying Input/Output (I/O) Configurations.”

NOTE
The examples in this section refer to an assortment of identifiers for devices, device adapters, and bus converters. The specific identifiers that you would use in configuring your system depend on your specific hardware. For more information refer to the documentation shipped with your hardware or contact your Hewlett-Packard support representative.
N-Class and A-Class Systems

These systems an address consisting of the bus converter number, the device adapter number, and the device address, and some SCSI devices are supported.

Bus Converters

To configure bus converter:

io> ap 1 PAT_IOA_BC
io> ap 1/0 id=PAT_PCI_BC
io> ap 1/0/0 id=PCI_DEVICE

Device Adapter

To configure a device adapter with an address of 3 to the channel adapter module identifier:

io> ap 1/0/0/0 id=A5150A

where nnnnn is a device adapter identifier such as HP28616A.

SCSI Devices

To configure a SCSI device you must use the word PSEUDO as the identifier:

io> ap 1/0/0/0.6 id=PSEUDO
io> adev 14 1/0/0/0.6.0 ST39103LC class=(DISC,SPOOL)
Adding a Peripheral to Any System

Adding a disk drive, tape drive, or printer to a system’s configuration includes the following steps:

- Enter SYSGEN
- View the system’s current configuration
- Activate the IO configurator
- Make the necessary I/O configuration changes
- Hold the changes
- Save the changes
- Verify the accuracy of the new configuration

1. Activate SYSGEN’s global module.
 Enter the SYSGEN command at the system prompt.

   ```
   (/SYS/PUB)>sysgen
   SYSGEN version E.03.00 : catalog version E.03.00    WED, FEB 13, 2002,
   10:51 AM
   Copyright 1987 Hewlett-Packard Co. All Rights Reserved.
   ** First level command **
   `io                log (lo)       misc (mi)        spu (sp)
   sysfile (sy)`

   `basegroup (ba)   keep(ke)       permyes (pe)     show (sh)
   tape (ta)`

   `clear (cl)(c)    exit (ex)(e)   help (he)(h)      oclose (oc)
   redo`

   sysgen>``

2. Select the base group to modify.

   If you desire to modify the default configuration groups, copy the groups to other group names and modify the copies using the IO configurator. Copying the groups preserves uncorrupted versions of the default or current configurations.

   To copy configuration groups, use the BASEGROUP command to activate the desired configuration group. Use the KEEP command to save the group of files to another group name. Refer to Chapter 4, “Using the System Generator (SYSGEN),” for more information on using the BASEGROUP and KEEP commands.
After deciding which copied configuration group to modify, use the global module `BASEGROUP` command to activate the group:

```
sysgen> BASEGROUP groupname
```

Use the I/O configuration contained in `CONFNCLI` as an example configuration for this exercise.

3. Activate the I/O configurator.

Enter the global module command, `IO`, at the SYSGEN prompt to activate the I/O configurator:

```
sysgen> io
```

```plaintext
** IO configurator commands **

 aclass (ac) adev (ad) apath (ap) avol (av)
 dclass (dc) ddev (dd) dpath (dp) dvol (dv)
 lclass (lc) ldev (ld) lpath (lp) lvol (lv)
 maddress(ma) mclass (mc) mdev (md) mpath (mp)
 mvol (mv)

 clear (cl)(c) exit (ex)(e) help (he)(h) hold (ho)
 oclose (oc) redo
```

4. Obtain I/O configuration listings.

Enter `LCLASS`, `LDEV`, and `LPATH`, at the I/O configurator prompt to get current I/O configuration listings:

```
io> LCLASS DEST=OFFLINE
io> LDEV DEST=OFFLINE
io> LPATH DEST=OFFLINE
```

The `OCLOSE` command closes SYSGEN’s listing file, `SYSGLIST`, and prints the information in the file.

Refer to Chapter 5, “Modifying Input/Output (I/O) Configurations,” for more information on using the `LCLASS`, `LDEV`, `LPATH`, and `OCLOSE` commands.

5. Decide on which LDEV to add the drive.

View the `LDEV` command output. Choose any unused LDEV and consider assigning it to the disk drive. For this example, use LDEV 14.

6. Decide on the class of the added peripheral.
View the \texttt{LCLASS} listing. If it contains a class (\texttt{DISC}) assigned to a particular type of peripheral (in this case, a disk drive), use that class for your addition. Remember, each device can simultaneously belong to up to eight classes.

If your configuration does not contain a class name for the additional peripheral, the system will create a class name for you if you use a name that does not exist. Class names may not exceed eight characters and must begin with an alphabetic character.

7. Add the path.

Since you are adding the drive to a newly installed PCI SCSI card, you must define the path down to the device adapter level. Use the \texttt{APATH} command to define the path.

For example, add the drive to a newly installed PCI SCSI card (ID number, A5150A). Enter:

\begin{verbatim}
io> ap 1/0/0/0 id=A5150A
\end{verbatim}

Refer to Chapter 5, “Modifying Input/Output (I/O) Configurations,” for additional information on using the \texttt{APATH} command.

8. Add the device.

Use the \texttt{ADEV} command to add the device, including the device address, to the path specified with the \texttt{APATH} command. Enter:

\begin{verbatim}
io> adev 14 1/0/0/0.6.0 ST39103LC class=(DISC,SPOOL)
\end{verbatim}

Refer to Chapter 5, “Modifying Input/Output (I/O) Configurations,” for additional information on using the \texttt{ADEV} command.

9. Hold all changes.

Enter the \texttt{IO} configurator \texttt{HOLD} command at the \texttt{IO} configurator prompt:

\begin{verbatim}
io> HOLD
\end{verbatim}

Refer to Chapter 5, “Modifying Input/Output (I/O) Configurations,” for additional information on using the \texttt{HOLD} command.

10. Exit the \texttt{IO} configurator.

Enter the \texttt{EXIT} command at the \texttt{IO} configurator prompt:

\begin{verbatim}
io>EXIT
sysgen>
\end{verbatim}

11. Save changes in a permanent file.

Enter the global module \texttt{KEEP} command at the \texttt{SYSGEN} prompt:

\begin{verbatim}
sysgen>KEEP CONFIG
\end{verbatim}

\texttt{CONFIG} is the group name under which you save the modified files. Each time you start up the system, the group \texttt{CONFIG} will then be the default.

Refer to Chapter 4, “Using the System Generator (SYSGEN),” for additional information on using the \texttt{KEEP} command.

12. Generate a boot tape.

Mount a write-enabled tape on the tape drive. Enter:
sysgen>TAPE
The system may place a tape request similar to the following:

?11:10/#S1/46/LDEV# FOR "SYSGTAPE" ON TAPE (NUM)?
If this message appears, respond:

CTRL A

=REPLY pin,7
where pin is the PIN (in this instance 46) from the third location in the tape request.

After all the files are stored, unload the tape, and write protect it. Label the tape, and
store it, in a secure location, with any other backup materials.

13. Exit SYSGEN and reboot the system.

sysgen>EXIT

NOTE Any disk device smaller than 400 Mbytes should not be installed as the
system disk (LDEV 1). A disk this size or smaller is too small to run the
operating system and its subsystems. A 400-Mbyte or smaller disk, however,
can be used as any other LDEV.
G  UPS and UPS Monitor/iX Software

A new method of power failure protection is available on all 7.0 supported systems. Instead of battery backup units, they will have one or more PowerTrust UPS (Uninterruptible Power Supply) devices.

Like the battery backup method of power failure, the UPS devices protect the HP e3000 system against the loss of work in progress in cases of utility AC power failures of up to fifteen minutes in duration. Furthermore, they have been designed to appear similar to the battery backup method which minimizes their effect on system operation and management procedures.

UPS devices offer two principal advantages over the battery backup method:

• In a minimal UPS-based system, the degree of power failure protection is equivalent to that provided by the battery backup unit. You can, however, add more UPS devices to the system and provide reserve power to selected peripherals. Depending upon how much of the system is provided with UPS power, it can run a partial or full workload non-stop through limited periods of AC power failure.

• The UPS contains a serial I/O communications interface that, in conjunction with UPS Monitor/iX software, notifies the system operator of any problems. Like the battery backup hardware that the UPS devices replace, a system-wide power failure recovery message is broadcast to all active user terminals and to the console upon the return of power following a failure. In addition to console messages, the UPS Monitor/iX software also posts a variety of status and warning messages to the system log files which you can review and analyze to evaluate system performance.
Configuring a UPS Device

You can use one of two configuration methods to add UPS devices to a Series 9X8, 9X9, N-Class or A-Class systems. For the first or only UPS, which is attached to the third serial port on the system's LAN/Console I/O interface card, you use NMMGR to set the data preconfigured in the default configuration group supplied with the FOS tape. You perform this procedure once, immediately after you install a new system. For additional UPS devices, which are attached to a DTC serial I/O port, you use NMMGR to supply all of the information necessary to configure the device(s). (As the final step in this second method, you will cross-validate the configuration files with SYSGEN.)

On a Series 991, 995, or 997, all UPS devices are attached to the system via a DTC serial I/O port. As a result, you use NMMGR to configure them in a procedure similar to configuring terminals, and then cross-validate the configuration files with SYSGEN. Use this procedure any time you need to configure UPS devices.

**NOTE**
Each UPS device, and only a UPS device, **must** have its device class name set to HPUPSDEV during I/O configuration. Otherwise, the UPS Monitor/iX software will not be able to initialize and communicate with the UPS device(s) correctly.

To Configure the First UPS on a Series 9X8, 9X9 N-Class, or A-Class

After you have installed a new Series 9X8 system, you must “set” the UPS configuration data supplied in default configuration group. To configure the first UPS, do the following:

1. Boot the system using the default configuration group.
2. At the MPE prompt, start the NMMGR program. Enter:
   ```
 RUN NMMGR.PUB.SYS
   ```
3. Press the **Open Config** softkey twice and wait while NMMGR opens a configuration file.
4. Enter a node name and press the **Save Data** softkey.
5. Press the **Go to DTS** softkey to display the DTS configuration screen.
6. Tab to the third field and enter the physical path of the LAN/Console I/O interface card, then press the **Save Data** softkey.
7. Press the **Go to UPS Port** softkey and at the UPS Port screen, verify that the LDEV number is correct, the Parity Checking option is set to **none**, and the baud rate to **1200**. Make any changes to this screen if it is necessary to correct the values.
8. Press the **Save Data** softkey to save your UPS Port configuration. (Note that the upper right corner of the screen will change from **Data: N** to **Data: Y**.)
9. Press **Prior Screen** twice and at the Main screen, press **Utility**.
10. At the Utility screen, press **Validate Link/DTS** to cross-validate the DTC configuration with the SYSGEN configuration.
11. Once validation is complete, press Prior Screen three times and at the Open Configuration File screen, press Exit Program to exit NMMGR.

12. Reboot the system to make the new configuration effective.

13. Turn power to the DTC hardware off and then on again to download the correct baud rate for the UPS port to the DTC hardware. (On some systems, cycling the power to a DTC may require you to unplug it and plug it in again.)

NOTE

If you don’t know the path of the Console/LAN interface card, start SYSGEN’s I/O configurator and at the io> prompt, use the LDEV command to check the path:

    io>LDEV LDEV=20

The console will be on an I/O path of the form XX/XX.0, such as 56/56.0. The UPS device that you are configuring will have a path of the form XX/XX.3 (for example, 56/56.3). Exit the I/O configurator and Sysgen and use this information in step 6.

<table>
<thead>
<tr>
<th>System Model</th>
<th>Console Path</th>
<th>Core I/O UPS Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>9X8</td>
<td>56/56.10</td>
<td>65/65.3</td>
</tr>
<tr>
<td>9X9</td>
<td>10/4/0.0</td>
<td>10/4/0.3</td>
</tr>
<tr>
<td>N-Class</td>
<td>0/0/4/0.0</td>
<td>0/0/4/0.2</td>
</tr>
<tr>
<td>A-Class</td>
<td>0/0/4/0.0</td>
<td>0/0/4/0.2</td>
</tr>
</tbody>
</table>

To configure the first UPS on an A or N class system

After you have installed a new A or N class system, you must “set” the UPS configuration data supplied in default configuration group. To configure the first UPS, do the following:

1. Boot the system using the default configuration group.

2. Configure the UPS ldev into the system using the sysgen program. The steps to do this are:

   a. At the MPE prompt, start the sysgen program. Enter:

      :RUN SYSGEN.PUB.SYS

   b. Go into the IO menu and use the add device (AD) command to add the UPS ldev.

      An example to do this is:

      sysgen>io

      io>ad 22 0/0/4/0.2 c1099a

      The list path (LD) and list device (LP) commands provide a mechanism for checking that the command to add the device worked correctly. These commands have the following output.

      io>ld 22

      LDEV: 22 DEVNAME: UTDEV: 22 MODE: JAID
ID: c1099A  RSIZE: 40  EVTYPE: TERM
PATH: 0/0/4/0.2  MPETYPE: 16  MPESUBTYPE: 0
CLASS: TERM

io> lp 0/0/4/0.2
PATH: 0/0/4/0.2  LDEV: 22
ID: C1099A  TYPE: TERM
PMGR: CDM_CONSOLE_DM  PMGRPRI: 9
LMGR: TIO_TLDM  MAXIOS: 0

3. Verify that the device class hpupsdev has been created. Use the list class (LC) command to verify this:

```
io> lc hpupsdev

CLASSNAME MODE MIN MODE DCC MODE # DCC LDEV
--------- ------- -------- -------- ----- ----
HPUPSDEV out out 0 22,
```

If the class doesn’t exist, then use the add class (AC) command to add it:

```
io> ac hpupsdev 22
```

If the class exists, but ldev 22 is not a member of that class, use the modify class (MC) command to add ldev 22 to the class:

```
io> mc hpupsdev aldev=22
```

The path used above will be consistent always for A class systems. For N class systems, this path will be used on the first release of the system core I/O board. A later release of the core I/O 2 board will require the use of the following path to the UPS port:

```
0/0/4/1.2
```

3. At the MPE prompt, start the NMMGR program. Enter:

```
:RUN NMMGR.PUB.SYS
```
4. Press the Open Config softkey twice and wait while NMMGR opens a configuration file.
5. Enter a node name and press the **Save Data** softkey.
6. Press the **Go to DTS** softkey to display the DTS configuration screen.
7. Tab to the third field and enter the physical path of the network interface card the
   DTCs will be connected to, then press the **Save Data** softkey.
8. Press the **Go to UPS Port** softkey and at the UPS Port screen, verify that the LDEV
   number is correct, the Parity Checking option is set to none, and the baud rate to 1200.
   Make any changes to this screen if it is necessary to correct the values.
9. Press the **Save Data** softkey to save your UPS Port configuration. (Note that the upper
   right corner of the screen will change from Data: N to Data: Y.)
10. Press **Prior Screen** twice and at the Main screen, press Utility.
11. At the Utility screen, press Validate Link/DTS to cross-validate the DTC configuration
    with the SYSGEN configuration.
12. Once validation is complete, press **Prior Screen** three times and at the Open
    Configuration File screen, press **Exit Program** to exit NMMGR.
13. Reboot the system to make the new configuration effective.

**NOTE**

If you don't know the path of the Console/LAN interface card, start
SYSGEN's I/O configurator and at the io> prompt, use the LDEV command to
check the path:

```
io>LDEV LDEV=20
```

The console will be on an I/O path of the form 0/0/X/0.0, such as 0/0/4/0.0. The
UPS device that you are configuring will have a path of the form 0/0/X/0.2 (for
example, 0/0/4/0.2). Exit the I/O configurator and Sysgen and use this
information in step 6.

---

**To Configure a UPS Connected via a DTC Port**

Use the following steps when you are configuring additional UPS devices (i.e., those other
than the first one) on the Series 9X8, 9X9, N-Class or A-Class system and for configuring
all UPS devices on the Series 991, 995, and 997 systems.

1. At the MPE prompt, start the NMMGR program. Enter:

   ```
 :RUN NMMGR.PUB.SYS
   ```

2. Press the **Open Config** softkey twice and wait while NMMGR opens a configuration file.
3. Press **Go to DTS** to enter the DTS configurator.
4. Press **Go to DTC** and choose the appropriate DTC configurator for the system (DTC16ix,
   DTC16MX, DTC16, DTC48, etc.).
5. Choose an available LDEV number for the UPS you are configuring, and determine
   which DTC port (DTC card number and port number) the UPS is connected to.
6. Press the **Config Card** softkey to enter the DTC card configurator.
7. Add each UPS by entering its logical device number in the Ldev field and **UP10D12** in the Profile Name field. When you have added all UPS devices, press **Save Data**.

8. Press the **Validate Link/DTS** softkey to cross-validate the DTC configuration with the SYSGEN configuration.

9. Once validation is complete, press **Prior Screen** until you see the Open Configuration File screen, and then press **Exit Program** to exit NMMGR.

   If you see a message that the NETXPORT subsystem has not been validated, ignore it and exit the program.

10. Shut down the system.

11. Turn power to the DTC hardware off and then on again to download the correct baud rate for the UPS port to the DTC hardware. (On some systems, cycling the power to a DTC may require you to unplug it and plug it in again.)

12. Reboot the system to make the new configuration effective.

**To Use UPS Monitor/iX Software**

Once you have configured UPS devices on the system, they will automatically be monitored by the UPS Monitor/iX software. This software causes the UPS devices to emulate the traditional battery backup method of system powerfail handling and recovery.

The UPS Monitor/iX process behaves in one of two ways, depending on the system on which Release 5.0 of MPE/iX has been installed:

- When installed on a system that has been configured with UPS devices, UPS Monitor/iX runs continually while the system is up to monitor all of the UPS devices for power failure and any other hardware status conditions. It reports these conditions to the system operator's console via console messages and records them in the system log file.

- When installed on an old system that does not use UPS devices, UPS Monitor/iX is launched at startup, discovers that there are no UPS devices on the system, and terminates itself. In this case, the system uses the existing battery backup method of system power failure protection.

---

**NOTE**

UPS monitoring is event number 148 in the system log files. The default is **ON** (i.e., UPS hardware conditions are recorded in the files) regardless of whether the system has UPS power fail protection or not. In the latter case, when no UPS devices have been configured, the system log files will receive and record two UPS-related messages each time the system starts: one indicating that the UPS Monitor/iX process has been launched and a second message which says that no UPS devices are found in the I/O configuration.

---

**System Behavior When AC Power Fails**

Whenever input AC power to any UPS device fails, the UPS hardware switches to internal battery operation to continue to deliver output AC power to the computer equipment. No actual power failure occurs at the computer equipment itself and, as a result, the SPU
configuring a UPS device

continues to operate. However, the actual behavior of the system will vary depending on how much of the system equipment is provided with UPS power.

In the “minimal” case, where only the SPU and any Remote Busses receive UPS power (and assuming that disks are external to the SPU), the system is most likely to appear to be dormant (like a traditional battery backup method system) because the system can not make progress once the disks lose power and spin down. The system will simply enter its “idle loop”, waiting for disk I/O operations to complete, and that won't happen until AC power returns and the disks spin up again.

But in expanded UPS coverage systems, where some or all of the disks receive UPS power, the system may continue to run to some extent. Again, it depends on what resources the system needs to perform its workload. Batch jobs that only need CPU, memory, and disk I/O can continue to run undisturbed. Processing that requires tape or printer or terminal I/O will be blocked if those peripherals do not have UPS power.

UPS Monitor/iX issues a warning message to the system console to notify the operator that the particular UPS (identified by its LDEV number) has reported to the system that its input AC power has failed. In Example G-1, UPS Monitor/iX reports and power failure and a recovery shortly thereafter:

Example G-1. Sample Console Messages from UPS Monitor/iX

```
:showtime
FRI, AUG 13, 1993, 11:27 AM
:
:11:27/50/UPS LDEV 102 reports loss of AC input power. (UPSERR 0033)

RECOVERY FROM POWER FAIL

11:27/50/UPS LDEV 102 reports AC input power restored. (UPSWRN 0036)
:
```

UPS Monitor/iX also writes a system log file entry that denotes the input power loss to the UPS device. Read “To enable logging of UPS activity” and “To review UPS activity recorded in the system log file,” later in this chapter for more information.

System Behavior When AC Power Returns

The behavior of the system when AC input power returns to the UPS is very similar to that of the battery backup method systems. One of two things will happen: a recovery from power failure (if AC power returns before the UPS battery that backs up the SPU becomes exhausted) or a system crash.

If AC power returns before the UPS battery becomes exhausted (up to fifteen minutes when starting with fully charged UPS batteries; less if the batteries were already partially discharged), then the system recovers from the AC power failure and resumes normal operation. In this case, UPS Monitor/iX displays a message on the system console, posts an entry in the system log files, and broadcasts the following message to all active user terminals:

** RECOVERY FROM POWERFAIL **
If the UPS battery that powers the SPU becomes exhausted before AC input power returns, then the system really does lose AC power and crashes. In this case, when AC power does return and the UPS turns on again, the system reboots just as if it used battery backup.

**To Enable Logging of UPS Activity**

The UPS Monitor/iX program posts UPS status and alarm messages to the system log files. If system logging for the UPS Monitor/iX (which is event number 148) is turned on, you can review the messages to troubleshoot your system configuration and evaluate system performance.

As the default, event 148 is ON. To verify that it is on, if necessary, to turn it on, do the following:

1. At the MPE prompt, start SYSGEN by entering:
   
   ```
 :SYSGEN
   ```

2. At the `sysgen>` prompt, start the LOG configurator by entering:
   
   ```
 sysgen>LOG
   ```

3. To display which system logging events are enabled or disabled, enter:
   
   ```
 log>SHOW SLOG
   ```
   
   You will see a list of information similar to the example shown on the next page.

4. To turn UPS Monitor/iX logging on (if it is currently listed as OFF), enter:
   
   ```
 log>SLOG ON=148
   ```

5. To exit the LOG configurator and SYSGEN, enter the `EXIT` command twice. You will see the MPE prompt displayed on your screen.

**Example G-2. Sample System Log Configuration**

```
log>SHOW SLOG

<table>
<thead>
<tr>
<th>system log events</th>
<th>event #</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>System logging enabled</td>
<td>100</td>
<td>OFF</td>
</tr>
<tr>
<td>System up record</td>
<td>101</td>
<td>ON</td>
</tr>
<tr>
<td>Job initiation record</td>
<td>102</td>
<td>OFF</td>
</tr>
<tr>
<td>Job termination record</td>
<td>103</td>
<td>OFF</td>
</tr>
<tr>
<td>Process termination record</td>
<td>104</td>
<td>OFF</td>
</tr>
<tr>
<td>NM file close record</td>
<td>105</td>
<td>OFF</td>
</tr>
<tr>
<td>System shutdown record</td>
<td>106</td>
<td>ON</td>
</tr>
<tr>
<td>Power failure record</td>
<td>107</td>
<td>ON</td>
</tr>
<tr>
<td>Spooling log record</td>
<td>108</td>
<td>OFF</td>
</tr>
<tr>
<td>I/O error record</td>
<td>111</td>
<td>ON</td>
</tr>
<tr>
<td>Physical mount/dismount</td>
<td>112</td>
<td>OFF</td>
</tr>
<tr>
<td>Logical mount/dismount</td>
<td>113</td>
<td>OFF</td>
</tr>
<tr>
<td>Tape labels record</td>
<td>114</td>
<td>OFF</td>
</tr>
<tr>
<td>Console log record</td>
<td>115</td>
<td>ON</td>
</tr>
<tr>
<td>Program file event</td>
<td>116</td>
<td>ON</td>
</tr>
<tr>
<td>NCS spooling log record</td>
<td>120</td>
<td>ON</td>
</tr>
</tbody>
</table>
```
### UPS and UPS Monitor/iX Software

**Configuring a UPS Device**

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Event Number</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architected interface record</td>
<td>130</td>
<td>ON</td>
</tr>
<tr>
<td>Password changes</td>
<td>134</td>
<td>ON</td>
</tr>
<tr>
<td>System logging configuration</td>
<td>135</td>
<td>ON</td>
</tr>
<tr>
<td>Restore logging</td>
<td>136</td>
<td>ON</td>
</tr>
<tr>
<td>Printer access failure</td>
<td>137</td>
<td>ON</td>
</tr>
<tr>
<td>ACD changes</td>
<td>138</td>
<td>ON</td>
</tr>
<tr>
<td>Stream initiation</td>
<td>139</td>
<td>ON</td>
</tr>
<tr>
<td>User logging</td>
<td>140</td>
<td>ON</td>
</tr>
<tr>
<td>Process creation</td>
<td>141</td>
<td>ON</td>
</tr>
<tr>
<td>Chgroup record</td>
<td>143</td>
<td>ON</td>
</tr>
<tr>
<td>File open record</td>
<td>144</td>
<td>ON</td>
</tr>
<tr>
<td>Maintenance request log</td>
<td>146</td>
<td>OFF</td>
</tr>
<tr>
<td>UPS Monitor Event Logging</td>
<td>148</td>
<td>OFF</td>
</tr>
<tr>
<td>Diagnostic Information</td>
<td>150</td>
<td>ON</td>
</tr>
<tr>
<td>High Priority Machine Check</td>
<td>151</td>
<td>ON</td>
</tr>
<tr>
<td>Low Priority Machine Check</td>
<td>152</td>
<td>ON</td>
</tr>
<tr>
<td>Directory Open/Close Logging</td>
<td>155</td>
<td>OFF</td>
</tr>
<tr>
<td>CM File Close</td>
<td>160</td>
<td>OFF</td>
</tr>
<tr>
<td>Chdir</td>
<td>161</td>
<td>OFF</td>
</tr>
<tr>
<td>Process Adoption</td>
<td>162</td>
<td>OFF</td>
</tr>
<tr>
<td>File Owner Change</td>
<td>163</td>
<td>OFF</td>
</tr>
</tbody>
</table>

**To Review UPS Activity Recorded in the System Log File**

UPS Monitor/iX status and alarm messages are recorded in the system log files as event number 148. You can use the LOGTOOL utility to review entries in the system log file about the performance and condition of UPS devices on your system. To do so, follow these steps:

1. List the names of the log files currently on your system. At the MPE prompt, enter:
   ```plaintext
 LISTFILE LOG@.PUB.SYS
   ```
   Note the number of the last log file in the list (other than LOGDCC). You will use it in step 5.

2. Start the system diagnostic utility. At the MPE prompt, enter:
   ```plaintext
 SYSDIAG
   ```

3. Run the LOGTOOL utility. Enter:
   ```plaintext
 DUI > RUN LOGTOOL
   ```

4. To review the current logfile, use the SWITCHLOG command to close it and open a new one.
   ```plaintext
 DUI > SWITCHLOG
   ```

5. List the UPS-related messages (which are recorded as system log event number 148) in the log file that you want to review. For example, if the last log file displayed with the LISTFILE command was LOG00017, enter:
   ```plaintext
 DUI > LIST LOG=17;TYPE=148
   ```
   Or, if the last log file was LOG00017 and you then issued the SWITCHLOG command, to
see the most recent log file you would enter:

    DUI >LIST LOG=18;TYPE=148

In a moment, you will see the contents of the system log files for event 148, which stores UPS-related messages. If event 148 was disabled, you are informed that no messages are found.
Using the Guardian Service Processor (GSP)

This section describes the Guardian Service Processor (GSP) commands and functions. The Guardian Service Processor is an independent support processor built into the N and A class Core I/O card for the system console that provides some major system manageability features:

- **Always-on capability**: The GSP is alive if the power cord is plugged in.
- **User/password access control**: Supports operator and administrator users.
- **Multiple access methods to the GSP**:
  - Local Port - use terminal or laptop computer for direct connect
  - Remote/modem Port - use dedicated modem RS-232 port and external modem
  - LAN - use telnet to access GSP LAN port from anywhere

- **Mirrored console**: the system console output stream is reflected to all of the connected console users.
- **Display and/or logging of**:
  - The system console, System event logs (chassis codes), Virtual Front Panel (VFP), and system power and configuration status.
- **On local and modem ports, an independent, non-mirrored session can be started, either to connect to a GSP, or login to the OS (SE).**
- **The GSP provides power control, system reset, and Transfer Of Control (TOC) capabilities.**
GSP Modes

When first logging on, the user is part of the mirrored GSP session. The mirrored GSP session has three major modes:

- **GSP Command Mode:** This is the mode that is active when you enter [ctrl]-B. It is where you enter the GSP commands.

- **Console Mode:** This mode is active when you enter the GSP CO command. If the OS is booted you will have access to the MPE Command Interpreter. If you are connected via the remote console port you can establish an independent session to the OS with the command ‘SE’ if the ldev has been properly configured on this port. See the section on how to configure the ldev on the modem port in MPE. (Where is this?)

- **VFP or Alert Mode:** The Virtual Front Panel is the method used to display the chassis codes or the state of the front panel LEDs. This mode is also entered if a hardware chassis code arrive that indicates a problem with the hardware while in the Early Boot Mode after a TC or RS command.

Configuring the Console terminal

Some of the terminal configuration parameters are important for proper GSP operation. The C1099A terminals connected to the local and remote console ports should be configured with the following parameter settings: All other terminal parameters not mentioned should be left at the default setting. To get to the configuration menus press the [F10] key then [F8].

**F2 Genrl:**
- Emulation=HPTerm
- Enhanced=On

**F6 Ports:**
- EIA Baud Rate=9600
- EIA Data Forma=8/1/N
- EIA Parity Check=Off
- EIA Xmit=No Protocol
- EIA_Recv=Xon-Xoff (XPC)

**F7 HostComm Mode=CharacterLocal Echo=Off**

**F9 Emul:Terminal ID: 70096**

**NOTE** The HP C1099A terminal is the model that is officially supported on the N and A Class systems. There have been no steps taken to preclude operation with other terminals, for example, the GSP does not check the terminal identification. Use other terminals at your own risk.

Entering GSP Command Mode

When the console is in GSP Command mode you have access to the GSP commands and
functions. Command mode is activated when you enter [ctrl] B at the system console or it can be activated when you access the system via the remote console port or via a connection to the GSP LAN Console port. When first connect to the GSP, you will see the following dialog:

Service Processor login:
Service Processor password:

Hewlett-Packard Guardian Service Processor

3000/900/N4000-36 System Name:

GSP Host Name:

When the system is first installed there is no login or password configured. Just press [Enter] at the login and password prompt. See the Security Options section for details on how to configure GSP users. The GSP responds to various two or three character commands.

**NOTE**

While in the GSP Command Mode console messages sent the console by the OS will be blocked from coming to the console port. The GSP has a history buffer that can hold about 250 lines of this data. If more data that this arrives while the GSP is in Command mode, then the oldest messages in the history buffer will be lost. To view the message that have arrived while in the GSP Command mode, use the CL command to view the history log.

---

**Using the GSP Help Facility**

There is extensive online help text available via the command ‘HE’ The following is the dialog used to access the help system and a summary of the available commands:

GSP Host Name:
GSP> he
HE

==== GSP Help ============== (Administrator) ===

Hardware Revision 8  Firmware Revision v.uu.ff mmm dd yyyy, hh:mm:ss

GSP Help System

Enter a command at the help prompt:

OVerview : Launch the help overview
Using the Guardian Service Processor (GSP)

GSP Modes

List      : Show the list of GSP commands
<COMMAND> : Enter the command name for help on individual command
TOPics    : Show all GSP Help topics and commands
HELP      : Display this screen
Q         : Quit help

====

GSP HELP: li
li

==== GSP Help ===============================================(Administrator)====

AC : Alert display Configuration       PC : Remote Power Control
AR : Automatic System Restart config.  PG : PAGING parameter setup
CA : Configure async/serial ports      PS : Power management module Status
CL : Console Log- view console history RS : Reset System through RST signal
CO : Console- return to console mode   SDM : Set Display Mode (hex or text)
CSP: Connect to remote Service Proc.   SE : SSESSION- log into the system
DC : Default Configuration             SL : Show Logs (chassis code buffer)
DI : Disconnect remote or LAN console SO : Security options & access control
EL : Enable/disable LAN access         SS : System Status of proc. modules
ER : Enable/disable Remote/modem       TC : Reset via Transfer of Control
HE : Display HELP for menu or command  TE : TELL- send a msg. to other users
IT : Inactivity Timeout settings       VFP : Virtual Front Panel display
LC : LAN configuration                 WHO : Display connected GSP users
LS : LAN Status                       XD : Diagnostics and/or Reset of GSP
MR : Modem Reset                      XU : Upgrade the GSP Firmware
MS : Modem Status

====

(HE for main help, enter command name, or Q to quit)

GSP HELP:

In the above display, vuu.ff is the revision of the GSP firmware and mmm dd yyyy is the date and hh:mm:ss is the time the revision was created.

The GSP commands can be grouped into the following categories:

• STATUS COMMANDS- Provide status on the server and the GSP.
  CL, LS, MS, PS, SL, SS, VFP

• SERVER CONTROL- Alter the state of the server
  MR, PC, RS, TC

• GENERAL GSP CONFIGURATION
AC, AR, DC, IT, RP, SDM, SO, XD, XU

- GSP PORT CONFIGURATION- Configure LAN, remote/modem, and local ports
  CA, EL, ER, LC, PG

- CONNECTIONS- Examine and make connections or change mode
  CO, CSP, DI, SE, TE, WHO, VFP

**Returning from GSP Command Mode to Console mode**

The GSP command CO returns the GSP from Command mode to Console mode. The port will return to the interface that was active when the [ctrl] B was entered. If the MPE Operating System is booted you will return to the ldev 20 logon session.

Gaining write access: When the GSP is returned to Console mode, only one user can provide input at any given time. To take control of the console, type [CTRL]-e c f (not CTRL-e CTRL-c CTRL-f). After this is done, other users will see the following prompt if they try to enter commands:

[Read only - use ^Ecf for console write access.]
Configuring the GSP

The GSP has several features that must be configured in order for them to be available. The following sections give a description of each feature and the command used to configure that feature. See the online help for details about the options that are available. The GSP configurations require you to enter commands in a dialog format. Pay close attention to the prompts. You may be asked for confirmation before each parameter takes effect.

Operator / Administrator summary

Administrators have more capabilities than Operators:

- Administrator-Only Commands:
  AR (Automatic server Restart), DC (Default Configuration), IT (Inactivity Timeout), LC (LAN Configuration), PG (PaGing), SO (Security Options)

- The GSP Command interface permission/access level: The permission/access level is set by the first user that types CTRL-B to initiate it. If that user is an operator-user, then the command interface runs in operator mode. Even if an administrator-user logs in later or if the operator-user disconnects, the mode stays the same. The mode will only change when the GSP command interface is left (to go to CONsole, for instance), and CTRL-B is typed again to return.

If no users are configured then all connections to the GSP have administrator capability. The first user configured will have administrator capability, when you configure additional users, you have the choice to give the user administrator or operator capability.

If you forget the administrator user or password you must reset the users configuration via a small reset button on Core I/O card at back of the system to regain access to the GSP. After the GSP finishes its reset, you will see a prompt and have the opportunity to reset the user configuration. If you don’t answer the prompt before it times out, the user configuration will be retained.

Console and remote port configuration (CA)

The following text shows the parameters that should be configured for the Local and remote serial ports. These parameters assume that the remote console port will be used for remote support and that it will be connected to the support modem.

GSP Host Name: <name>
GSP> ca

CA

This command allows you to modify the local and remote modem serial port configurations. Current configuration settings:

- Local Console Serial Port bit rate: 9600 bits/s
- Local Console Serial Port Flow Control: Software
- Local Console Serial Port Terminal Type: hpterm
- Remote Console Serial Port Modem Protocol: CCITT
- Remote Console Serial Port Modem bit rate: 9600 bits/s
- Remote Console Serial Port Modem Flow Control: Software
Remote Console Serial Port Modem Transmit Configuration Strings: Enabled
Remote Console Serial Port Modem Presence: always connected

Do you want to modify the Local Console Serial Port settings? (Y/[N]) n
n
Do you want to modify the Remote Console Serial Port Modem settings? (Y/[N]) n
n
GSP Host Name: <name>
GSP>

GSP LAN configuration (LC)
This command modifies the GSP LAN/Console configuration. These parameters must be set to allow access to the GSP via the GSP LAN/Console port. This command sets the following:

- The IP address
- The host name displayed at the GSP prompts,
- The Subnet mask to be used by this node,
- The address of the gateway node for this network.

Display a list of GSP connected users (WHO)
This command displays the login name of the connected console client users and the port on which they are connected. For the LAN console clients the remote IP address is also displayed.

There is always one user listed for the local serial port. This is a default user name ("local user") if the local console client user didn't originate the GSP Command Interface session. If the local console operator typed CTRL-B, then the login name that the local operator typed is displayed instead.

SEE ALSO: TE (TEll)

Security Options & access control (SO)
This command is used to modify the security parameters of the GSP. These include user accounts, login timeouts, allowed password faults, etc. Most of the parameters are familiar; the following require some extra explanation:

**Dial-Back:** If configured, when the user accesses the GSP via the modem port, the GSP will hang up and dial the user back. This will not work if "Modem Presence" is set to "not always connected" in the CA command.

**Mode:** Single/Multiple. If the mode is Single, the State will be changed to disabled after the first login.

**User's State:** Enabled/Disabled. A disabled user's login will not be accepted. (ADMINISTRATOR level command.)
Remote Power Control (PC)

For proper system shutdown, shut down the OS before issuing this command.

This command allows the user to switch the system power ON or OFF, or Power Cycle the machine. The user can have the action take place immediately, or after a specified delay.

Note this is roughly equivalent to turning the system power off at the front panel switch. There is no signal sent to the OS to bring the software down before power is turned off. To turn the system off properly, the operator must ensure that the OS is in the proper shutdown state before issuing this command, by using the proper OS commands.

SEE ALSO: PS (Power Status)

Diagnostic and/or Reset of GSP (XD)

This command allows the user to perform some simple checks to confirm the GSP's health and its connectivity status. The following tests are available:

- Parameters checksum
- I2C bus test
- LAN connectivity test using "ping"
- Modem self-tests

Also, the GSP can be reset from this command. A GSP reset can be safely performed without affecting the operation of the server.

Upgrade the GSP Firmware (XU)

The upgrade is performed using ftp over the GSP LAN, which must therefore be operational. The user must enter the ftp server IP address, login, password, and the directory in which the upgrade files reside. If an upgrade is required, contact your HP Representative to get the location and logon to the server where the upgrade files reside.

When the command is initiated, the LAN and modem connections will be dropped. The XU command can only be run from the local port. If the upgrade is successful, the GSP will reboot and come up using the new software.

If the upgrade fails, the GSP will return to the prompt with instructions on what went wrong, and what to do next.

Upgrading the GSP software and rebooting the GSP can be safely performed without affecting the operation of the server.

The version of GSP firmware is displayed at the top of the main help menu.

Virtual Front Panel Display (VFP)

When invoked, the VFP will display the LED state with a text decode and the most recent Chassis Code received. At that point, the user can then proceed with the live-mode VFP display of chassis codes, or quit back to the GSP prompt.

There are two ways that the live display of chassis codes can be started:
LIVE MODE: Invoked from the VFP command at the GSP prompt. To exit, you must type Q to quit to the console.

EARLY BOOT MODE: When the boot sequence for the system begins, the live VFP is invoked automatically. When boot finishes, users are automatically switched to console mode.

The LED state reflects the state of the front panel LED's. When system power is off, the remote LED will show “OFF” even though remote access may be enabled in the EL or ER commands.
Glossary

**abort** A procedure that terminates a program or session if an irrecoverable error, mistake, or malfunction occurs.

**access** The process of obtaining data from files or acquiring the use of a device. Access implies an input/output (I/O) operation, and is used as a synonym for I/O.

**access port (AP)** The port located in the channel I/O (CIO) section of the system card cage that provides a user support interface for issuing hard and soft resets through software commands from the console. It allows a remote console to be enabled and to switch between console and session modes.

**account** A collection of users and groups. Each account has a unique name on the system. It is the method used to organize a system's users and files and to allocate use of system resources such as central processor time, online connect time, and file space. Accounts are the principal billing entity for the use of these resources. Every user must specify an account to access the system.

**account level security** The types of file access assigned by the system manager to the account when it is created. The types of access are READ, LOCK, APPEND, WRITE, and EXECUTE, abbreviated R, L, A, W, and X respectively. They may be assigned to any user (ANY), members of the account only (AC), or members of the group only (GU). The types of file access permitted are the first level of system security. The account manager may further restrict groups and users within an account by assigning them a limited set of file access modes.

**account librarian capability (AL capability)** A capability assigned by the account manager to a user within the account. An account librarian is allowed special file access modes to maintain specified files within the account.

**account manager capability (AM capability)** A capability assigned by the system manager to one user within each account who is then responsible for establishing users and groups.

**account member** A person who has been granted access to the system through the use of a valid user name within an account. Account members are created by the account manager, who defines the user name and assigns the appropriate capabilities and security restrictions for the user.

**account structure** The method of providing organization, security, and billing for the system. It is used to allocate use of system resources such as central processor time, online connect time, and file space. The account is the principal billing entity for the use of system resources.

**alpha character** A character in the range of A through Z (or a through z).

**alphanumeric character** A character in the range of A through Z, a through z, or 0 through 9.
**alternate boot path** The path used for booting the system from a boot tape.

**application** A set of computer instructions or programs that guide the computer through a specific task or set of tasks. Examples of applications include spreadsheets, word processing programs, graphics, database management, and communications.

**application program** A set of computer instructions that guides the computer through a specific set of tasks. Applications include spreadsheets, word processing, graphics, database management, and data communication programs.

**architecture** 1) The unique set of machine instructions, registers, and other components that provide the conceptual basis of a computer. 2) In networking, a structured modular network design in which different data communications tasks are assigned to different layers or levels.

**attribute** File access codes and special capabilities that enable the computer to determine what functions it will or will not allow a user, group, or account to perform.

**autoboot** The process of automatically starting the system.

**automatic restart** Main memory battery backup to automatically restart the system after a power failure. Temporary power line interruptions can be tolerated with no data loss and without needing to restart the system.

**backup** The process that duplicates computer data to offline media, such as magnetic tape. Backups protect data if a system problem should occur.

**batch access capability (BA Capability)** A default capability assigned to accounts and users that allows users to submit batch jobs.

**battery backup unit** A box within the SPU that contains a battery to supply power to main memory during a power failure.

**boot** The process of loading, initializing, and running an operating system.

**boot path** The pointers to the set of files that are used to bring up the system from disk or tape. The primary boot path is used for booting the system from disk resident software. The alternate boot path is used for booting the system from a boot tape. The console boot path is used to determine if the system can autoboot without operator intervention.

**boot tape** A tape created by backing up the system configuration with the system generator (SYSGEN) utility program that is used to reload the system configuration. Also referred to as a system load tape. Equivalent to MPE V/E coldload tape.

**capability** A method for determining what commands account members are allowed to execute. Capabilities are assigned to accounts, groups, and users to provide system security and access to the operating system. Account capabilities are assigned by the system manager when the account is created. The account manager then assigns capabilities to groups and users within the account.
**channel** A path within a data communications line through which data flows.

**channel I/O (CIO)** Input/output instructions for a channel.

**channel I/O adapter** A device that provides the interface between the central bus (CTB) and the channel I/O buses. Each channel I/O adapter serves as a high performance channel multiplexer providing a full direct memory access (DMA) for all HP-IB and LAN I/O channels and synchronizing the differing speeds and bandwidths of the CTB and channel I/O buses.

**channel I/O bus (CIB)** A device that provides a synchronous bi-directional data path between the central bus (CTB) and I/O devices.

**channel number** The number assigned to the device controller board in the I/O card cage. It is used to calculate the logical address of the device, or device reference table (DRT) number.

**CIO adapter (CA)** The interface slot number containing the adapter for the CIO Bus and central bus (CTB).

**CIO expander** The channel input and output expander that provides eight additional peripheral card slots to the SPU.

**class** A user-defined collection of objects.

**class name** 1) A label that is either unique to, or associated with, one or more devices in the system's I/O configuration, used to reference a particular device or class of devices. Device class names may be up to eight alphanumeric characters long, beginning with a letter. A single logical device can have multiple device classnames. The HP 2680 laser printer, for example, is referred to as **EPOC** (electrophotographic output for computers), **PP** (page printer), or **SLP** (system line printer). Directing output to any of these class names sends the output to a laser printer. 2) An abstract entity that can own objects in an HP SQL DBEnvironment. 3) A set of one or more SQL or ISQL commands in a file that can be executed with the ISQL **START** command.

**command interpreter (CI)** A program that reads command lines entered at the standard input device, interprets them, determines if they are valid, and if so, executes them.

**communication link** The software and hardware that moves data from the driver and card of one computer to the driver of an adjacent computer.

**compatibility** The ability of software developed for one computer to work on another computer. See compatibility mode.

**compatibility mode (CM)** A method of providing object code compatibility between MPE V/E-based systems and the 900 Series HP 3000 system. Compatibility mode allows current Hewlett-Packard customers to move applications and data to the 900 Series HP 3000 system without changes or recompilation.
configuration 1) The way in which computer and peripheral devices are programmed to interact with each other. 2) The layout of the computer system, including MPE table, memory, and buffer sizes. The configuration tells which peripheral devices are connected to the computer and how they can be accessed.

connect time The amount of time, in minutes, that a user, group, or account has used the CPU for a session or job. It can be displayed by executing the MPE REPORT command.

console A terminal given unique status by the operating system. The operator uses the console to monitor and manage jobs, sessions and resources, respond to requests, and communicate with other user terminals. It is used to boot the system and receive system loader error messages, system error messages, and system status messages.

console boot path The path used to determine if the system can autoboot without operator intervention.

console command A command that is executable only from the system console at the = prompt (generated by pressing CTRL and the A key at the console keyboard). Console commands cannot be entered by other users because CTRL A has no meaning on a standard terminal. The logical console, however, can be moved to a standard terminal.

console logging A system logging event. It records console commands in the system log file.

continuation character An ampersand (&) character entered as the last character of a command line. A continuation character tells the command interpreter that the command is longer than one line and is continuing onto a second or more subsequent lines.

control-Y A break function activated by simultaneously pressing the CTRL key and the Y key on a terminal's keyboard. It is typically a subsystem break and does not affect MPE commands. In documentation this two-key sequence is shown as CTRL Y.

CPU time The amount of time, in seconds, that a user, group, or account has used the CPU. It can be displayed by executing the MPE REPORT command.

crash 1) The unexpected shutdown of a program or system. If the operating system crashes, it is called a system crash, and requires the system to be rebooted. 2) A head crash or disk crash. This occurs when the read/write heads on a disk drive (that normally ride on a thin cushion of air above the disk) make physical contact with the disk surface, destroying data and the disk track. The extent of damage to the system depends on which disk was involved and how much of the disk was corrupted. A crash of the system disk is serious, since it contains the directory of user files as well as operating system programs, the I/O configuration, and the account structure.

create volumes capability (CV Capability) The ability to define and access non system domain disks with the NEWSET command (private volumes with the NEWVSET command for MPE V/E). Users and accounts assigned CV capability are automatically given use volumes (UV) capability.

cumulative backup A backup strategy where a full backup is done once a week and
partial backups on all other work days.

**data communications** The transmission of information from one computer or terminal to another. It is sometimes shortened to datacom.

**data communications and terminal subsystems** The methodology used to connect all asynchronous devices to a 900 Series HP 3000, except for the system console.

**default** A predefined value or condition that is assumed, and used by the operating system if no other value or condition is specified.

**device adapter** A device that manages communications between the computer and a peripheral device. It is the same as an I/O interface card.

**device class** A collection of devices that have some user-defined relation. The file system supports a means of maintaining collections of devices but is cognizant of the relation only for certain device class names.

**device file** A file associated with a non-shareable device (a spool file). Input and output spool files are identified by a number in the DFID (device file identification) column of the SHOWIN and SHOWOUT command displays. A device file can also refer to any non-disk device, such as $STDIN and $STDLIST, the default input and output device files for a terminal.

**device independence** A characteristic of the operating system that allows users to selectively redirect input or output from a program, session, or job using the FILE command without regard to the nature of the device. File equations created with the FILE command are in effect only for the duration of the job or session in which they were defined.

**device subtype** A number ranging from 0 to 15 that defines a specific device and its associated software driver. There can be several device subtypes within one basic type. For example, a graphics terminal and one without graphics capabilities can share the same device type, but are assigned different subtype numbers.

**device type** A number that defines a type of device. For example, 0 represents a moving-head disk and 16 is the device type number assigned to line printers.

**diagnostician capability (DI Capability)** A capability usually assigned only to the Hewlett-Packard customer engineer (CE). It allows the CE to conduct certain CPU and diagnostic tests.

**directory** A system table showing the group or account in which a file is located. A directory may contain other information such as size of the file, its creation date, any modification dates, file creator, or file security information.

**DISCFREE** A utility that supplies information about a system's unused disk space, transient and permanent space, and the volume's total space capacity. The information is supplied in either a histogram or a condensed format. Equivalent to the MPE V/E FREE5 utility.
**disk** A circular plate of magnetically coated material used to store computer data. A disk may be fixed, removable, hard, or flexible.

**disk drive** A peripheral device that reads information from and writes information to the disk.

**disk file** A file stored on disk.

**disk I/O** The electromechanical process of transferring the code and data that are stored on disk to and from main memory.

**disk pack** A set of one or more disk platters stacked inside a plastic cylindrical container.

**disk sector** A section of a disk's surface. A file is stored in one or more sectors.

**distributed systems line (DS Line)** The communication line between two computers, controlled by the distributed systems network.

**distributed systems network (DSN)** A system of hardware and software data communications products spanning multiple Hewlett-Packard product lines.

**distributed terminal controller (DTC)** An intelligent controller with microprocessors to handle workstation connection preprocessing and communications with the system.

**DRT number** Device reference table number. The physical I/O address of a device controller, displayed in the second column of the I/O Configuration Table listed during the SYSDUMP dialog. An MPE V/E index into the DRT.

**DUMP** A utility program that writes the current state of the system's main memory and secondary storage to tape for analysis. DUMP also, optionally, attempts a software reboot from disk.

**EXCLUSIVE access** A restriction limiting file access to one user at a time. EXCLUSIVE access is particularly important during file updates, when two or more people modifying the same record within a file, at the same time, could destroy data consistency.

**execute** To carry out the instructions or to perform the routine indicated by entering a command or program name.

**executing state** The state of a job or session when it is in progress. Other possible states are INTRO, WAIT, EXEC*, and SUSP.

**extent** A group of one or more contiguous sectors on a volume used to allocate permanent disk space. Extents can be variable length; any number of extents can exist for a given file.

**file** A group of related records that represents ASCII text (text files) or binary data (such as executable code). Every file must have a file name so the user can access the file's contents.

**file code** A four-digit integer that identifies the special function of a file. Users can assign
a file code between 0 and 1023 to a file they create to classify it according to its purpose.

**file equation** A method of equating a file name to a device or another file. The `FILE` command is used to establish the relationship of the file to the device. Generally used to direct the input to or output from a program, job, or session to a particular device by referring to the device class, such as `TAPE` or `LP`.

**file identifier** A number associating a name with a file system object. The file identifier is given to users to access objects via the file system.

**file name** A string of up to eight alphanumeric characters, the first of which must be an alphabetic character. The file name is assigned when the file is created or first saved.

**file number** An integer value assigned by the `FOPEN` intrinsic that is used to refer to a file in a user program. File numbers zero through seven are reserved for the operating system.

**file space** The number of sectors of disk space that a user, group, or account is using. It is determined by executing the `REPORT` command.

**foreign disk** A non-system domain disk that MPE V/E does not recognize as a private volume or serial disk. Foreign disks are non shareable devices, and can be formatted either sequentially or for direct record access. Foreign disks, such as private volumes and serial disks, do not have entries in the system volume table.

**formal file designator** An alias file name that is used either programmatically or in a file equation to refer to a file. The formal file designator is not the file name found in the system file directory.

**free space map** A map of allocated and available disk sectors on the volume set.

**fully qualified file name** A complete file description that includes the file name, the group to which the file belongs, and the account to which the group belongs. The fully qualified file name of the `LETTER` file in the `PUB` group of the `SYS` account is expressed as `LETTER.PUB.SYS`.

**function keys** Special keys on the terminal keyboard that are labelled sequentially, F1, F2, F3, and so on, and that correspond to the windows that appear at the bottom of the terminal screen. Function keys perform various activities.

**Fundamental Operating Software (FOS)** The programs, utilities, and subsystems supplied on the master installation tape (MIT) for MPE.

**group** Part of an account that is used to organize the account's files. All files must be assigned to a group. Each group must have a unique name within an account. Groups are the smallest entity for which use of system resources is reported. A `PUB` group is designated for each account when it is created. Additional groups are created within the account, as needed, by the account manager.

**group-level security** The file access modes, and the types of users to whom they are available, as specified by the account manager when the group is created. File access
modes assigned to a group are limited to those types permitted to the account.

**group librarian capability (GL capability)** A capability assigned by the account manager to a user within an account. A group librarian is allowed special file access modes for the maintenance of certain files within the user's home group.

**hard reset** A method of resetting the computer or a terminal. A hard reset erases all information in memory.

**hardware** All the physical components of the computer, including the CPU cabinet, tape drives, disk drives, terminals, and other peripherals.

**help facility** An online utility providing information on all commands. Information can be accessed by topic areas and tasks.

**Hewlett-Packard Data-Link Control II (HP-DLC-II)** A standard that defines the elements and procedures for a balanced, bit-oriented, Level II protocol of the Open Systems Interconnection (OSI) model.

**Hewlett-Packard Graphics Language (HP-GL)** The graphics instruction set for Hewlett-Packard film recorders and plotters.

**Hewlett-Packard Interface Bus (HP-IB)** A channel consisting of an HP-IB cable connected to an HP-IB interface card that is connected to the system's backplane. It performs protocol translation between the CPU and HP-IB. For the 900 Series HP 3000 system up to six devices can be connected to a single HP-IB channel. Disk drives, tape drives, and system printers are connected via an HP-IB which is HP's implementation of the IEEE standard 488-1975 interface.

**High Level Data-Link Control (HDLC)** Types of protocols that eliminate much of the handshaking (and resultant time-consuming line turnarounds).

**histogram** A graphical representation of data.

**home directory** The default group, within an account, used as the current working directory when none is specified at logon time.

**home group** The group to which a user is automatically logged on to if no other group is specified with the **HELLO** or **JOB** command. If no home group is assigned, the user must always specify a group when logging on. The account manager assigns the home group when a user's name is first defined.

**host computer** 1) The primary or controlling computer in a multiple computer installation. 2) In a network, the computer that primarily provides services such as computation, database access, or special programs or programming languages, to other users on the network.

**implied run** The ability to run a program without explicitly using the **RUN** command. In MPE/iX it is not necessary to specify **RUN FCOPY.PUB.SYS** to invoke and run the FCOPY program. It is only necessary to enter **FCOPY**.
**incremental backup** A backup strategy where a full backup is done once a week and partial backups are done on every other work day.

**initial program load (IPL)** The initialization procedure that causes an operating system to begin operation.

**initial system loader (ISL)** The software used to bring up MPE/iX or to perform a memory dump to tape. It provides a user interface to obtain information about or to alter the bootpath.

**input** 1) The data to be processed. 2) The process of transferring data from external storage to the computer.

**input/output (I/O)** The process of, or equipment used in, transmitting information to or from the computer.

**input priority** A number in the range of 1 (lowest priority) to 14 (highest priority) assigned to input jobs. The input priority can be assigned by the system (default is 8) or by the user. Jobs with a input priority less than or equal to the system outfence (default 7) are deferred.

**INSTALL** The MPE/iX initial system loader (ISL) utility that performs a system load from tape and builds essential operating system files and data structures on disk. Equivalent to the MPE V/E **RELOAD** operation.

**interactive session** A session that allows users to enter commands and data at the terminal and receive an immediate response. Interactive sessions are useful for data entry and retrieval, text editing, or program development where direct dialog with the computer is preferred.

**interactive access capability (IA capability)** A capability assigned to accounts and users allowing users to initiate sessions with the **HELLO** command.

**interactive user** A user who enters commands at a terminal.

**I/O bay** A cabinet containing the card cages and device controller boards for peripherals connected to the HP 3000.

**I/O dependent code (IODC)** The portion of the operating system software that contains I/O module dependent data and code used by Processor Dependent Code (PDC) in configuring the I/O module and in booting the system.

**I/O path** The address of the interface hardware and the physical path to reach a device. It is constructed top down from where the device is physically attached to the system. The path is determined by the CIO adapter module number, the device adapter (DA) slot number, and the device address.

**job** A method of submitting a single command to process multiple operating system and utility commands. Once submitted, the job executes independently of the user’s session. Jobs are used to compile source programs, modify files, or perform other functions not
requiring user interaction.

**job limit** A limit set to manage the number of jobs executing on the system. The system manager or operator can restrict system usage by reducing the number of jobs allowed to run. If the `LIMIT` command is used to set the job limit to 0 (zero), no additional jobs can log onto the system.

**keyword** A word assigned a specific meaning by the operating system, a subsystem, a computer language, or a utility.

**keyword parameters** Words that have special meaning to the command interpreter and are used to modify the intent or effect of an MPE command. Keyword parameters, unlike positional parameters, may appear in any order after a command has been entered on the command line. An entire keyword parameter group, such as `PASS=password`, must be separated from other keyword parameters by a semicolon (`;`).

**LAN 3000/XL LINK** The hardware and communications software needed to connect 900 Series HP 3000 machines to a network for system-to-system communication.

**LAN cables** Cables used to connect the distributed terminal controller (DTC) and the system.

**LDEV number** See logical device number.

**library** A file containing a set of procedures and variables that can be accessed by programs.

**Local Area Network (LAN)** A computer network confined to a single location. For example, connecting two or more computer systems within a single office together creates a LAN.

**Local Area Network Interface Controller (LANIC)** A hardware card that fits into the backplane of the HP 3000 system and provides a physical layer for IEEE 802.3 local area networks.

**local network** The network to which the local node belongs.

**local node** The system where you are physically located and logged on, and at which you enter commands.

**locked state** The status of an output spoolfile when it is unavailable for printing.

**lockword** A word used as a security device on files. A lockword can be assigned to a file when it is created or renamed, and must be supplied to regain access to the file. The word can be from one to eight alphanumeric characters long and must begin with an alphabetic character.

**log file** A file that maintains a record of events. Each event is recorded in a separate log record, and is correlated with the job or session causing the event.
**logging** 1) The process of recording all system modifications to a tape or disk file for the purpose of recovery or accountability. If the system fails, the log file can be used to restore the system to its state prior to the failure. 2) The process used by DBCore to record the activity of a DBEnvironment to enable either rollback or rollforward recovery if necessary.

**logging shutdown** A shutdown marking the end of the logging cycle. In most cases, it is performed just prior to either system or database backup.

**logical device (LDEV)** A disk file, a set of disk files, or a physical device associated with a data stream between a host and a remote system.

**logical device number** A number assigned to all hardware components of a computer system and used for identification purposes.

**logoff** A method of terminating a session. To log off the system, enter the **BYE** or **EXIT** command.

**logon** A method of initiating a session. To log on to MPE/iX, enter the **HELLO** command and a valid user and account name, plus a group name if necessary, and any required passwords.

**logon group** The group specified when logging on using the **HELLO** command. The syntax is `username.accountname, groupname`. Once the desired group is accessed, resident files can be referred to without fully qualifying them.

**logon identity** A security device used to verify users to the system. A logon identity includes a valid user name and account name in the form `user.account`.

**logon prompt** A system prompt that indicates the computer is ready to initiate a session.

**logon session** An identification device used when logging on. The correct syntax is `sessionname,username.accountname`.

**master volume** The only volume needed to define a volume set. It contains the configuration data, the root directory, a free space map, file label table, and a volume label with a unique volume set ID for the volume set.

**member volume** A volume containing a volume label indicating that it belongs to a volume set. It may be used by one or more volume classes.

**memory error logging** A facility that records all memory errors. It begins automatically when the system is initialized.

**memory mapped I/O** A configuration in which each device or I/O interface card is assigned a set of memory locations, or memory mapped I/O registers.

**menu** A display on the terminal screen showing the options available within a program. Many application programs use menus to show the options a user can select.

**MPE/iX** Multi-Programming Executive with integrated POSIX. The operating system for
the 900 Series HP 3000 computers. MPE/iX manages all system resources and coordinates the execution of all programs running on the system.

**multiple RIN capability (MR capability)** A capability assigned to accounts and users allowing a user multiple RINs (resource identification numbers) so they can lock more than one resource or device at a time. MR capability is usually restricted to only a few users, since simultaneous resource locking can lock (or hang) the entire system.

**multiple RINs** The mechanism that allows an account, group, or user to lock more than one resource at a time by specifying the multiple RIN (MR) capability with the ALTACCT, ALTGROUP, or ALTUSER commands.

**native mode (NM)** The native run-time environment of MPE/iX. In native mode, source code has been compiled into the native instruction set of the 900 Series HP 3000 system.

**network** A group of computer systems connected so that they can exchange information and share resources.

**network administrator capability (NA capability)** A capability that allows a user to manage the data communications subsystem at a specified location.

**network architecture** A structured, modular design for networks.

**network services (NS)** A group of software products that provide the user interface to the network. They allow batch jobs submittals, file transfers, virtual terminal access, and other services.

**node** One end of a communications link or a computer system in a network. For example, if two HP 3000 computers are connected via a DS line, each system is considered a node.

**node manager capability (NM capability)** A capability assigned to users allowing them to control communications subsystems at their node.

**node name** A string of up to 31 characters, not including control characters or spaces, that uniquely identifies a node on a local area network (LAN).

**non-shareable device capability (ND capability)** A capability assigned to accounts and users allowing account members to own non-shareable devices such as unspooled tape drives and line printers, serial disks, private volumes (on MPE V/E), and foreign disks.

**nonsystem volumes** Volumes that are member volumes of a volume set. They do not need to be mounted for the operating system to run.

**operating system** The software that allows the computer to operate. It consists of programs such as basic file and I/O manipulators. All subsystems run upon the operating system.

**operator command** Commands executed only at the system console by the system operator. Operator commands can be distributed to specific users at the operator’s discretion with the ALLOW, ASSOCIATE, and JOBSECURITY commands.
**OPERATOR.SYS** The user and account that MPE automatically logs on to at the console when the system is started. **OPERATOR.SYS** may or may not be assigned special capabilities. Unlike the system supervisor (who is assigned OP capability), or the system manager (who is assigned SM capability), there is no mnemonic that entitles the operator to execute a special subset of commands. The operator's power and responsibilities derive solely from control of the system console and any capabilities assigned to it by the account manager of the **SYS** account.

**optional parameter** A parameter that is not required when entering a command or calling an intrinsic. In reference manuals, optional parameters are surrounded by square brackets ([ ]).

**outfence** A number in the range of 1 (lowest priority) to 14 (highest priority), used to control access to the system printer. If a job does not have an input priority higher than the system outfence (default 7), it will not print.

**output** Data transferred from internal to secondary (external) storage in a computer. Also, the process of transferring information from the computer to a peripheral device.

**output priority** A number in the range of 1 (lowest priority) to 13 (highest priority) assigned to an output spool file either by the system (a default value) or by a user. It is used to determine the order in which files will be printed.

**parameter** A value in a list of values that is passed to a procedure. The parameter is used in calculations or operations in the procedure.

**path** The course within a computer that a message takes, typically through software protocol handlers.

**peripheral** A hardware device attached to and controlled by a computer, such as a terminal, tape drive, disk drive, or printer.

**permanent file** A disk file with an entry in the system directory. To delete the file, it must be erased from the system with the **PURGE** command or with certain invocations of the **FCLOSE** intrinsic.

**permanent space** Disk space reserved for use by permanent structures such as files, the label table, or the free space map.

**port** An outlet from the computer used to connect the computer to peripheral devices. A cable runs between the outlet and the device.

**positional parameters** One or more terms appearing in a specific order on the command line that modify the intent or effect of the command. If a positional parameter is omitted, the user must supply a comma in its place.

**power down** To turn the system power off.

**power up** To turn the system power on.
**preventive maintenance (PM)** The regular housecleaning chores performed to keep the system from suffering performance degradation and to prevent problems from developing on the system.

**primary boot path** The path used to boot the system from disk-resident software.

**priority request** The use of the optional parameter ;HIPRI in the **HELLO** and **JOB** commands. This capability, granted to system supervisors and system managers, allows a job to be dispatched or a session to be initiated, overriding the current jobfence or execution limit.

**private volumes** MPE V/E removable disk volumes that are not included in the system I/O configuration table and, therefore, must be brought online with an explicit **LMOUNT** command. To access a private volume, a user's logon group and account must be assigned to a specific volume set with the **VS** parameter of the **ALTGROUP** and **ALTACCT** commands. Private volumes are nonsystem domain devices. Equivalent to MPE/iX mountable or nonsystem volumes.

**privileged mode capability (PM capability)** A capability assigned to accounts, groups, or users allowing unrestricted memory access, access to privileged CPU instructions, and the ability to call privileged procedures.

**process** The unique execution of a program or procedure by a particular user at a particular time. If several users execute the same program, each is a separate process. Similarly, if the same user runs several programs, each execution is also considered a distinct process.

**process handling capability (PH capability)** A capability optionally assigned to accounts, groups, and users allowing a currently executing process to create other processes. PH capability also allows process suspension, interprocess communication, and process deletion. Since the proliferation of processes results in heavy system resource usage, PH capability is typically restricted to only a few users.

**process identification number (PIN)** A number assigned to a process by MPE when the process is created. It is used internally by MPE (in the process control block (PCB) table) and during requests for system resources at the console (when the operator responds to requests by referencing the PIN in the **REPLY** command).

**processor dependent code (PDC)** An MPE/iX hardware routine to read and initialize the I/O paths used for booting or rebooting the system.

**program** A sequence of instructions that tells the computer how to perform a specific task.

**programmatic sessions capability (PS capability)** A capability allowing a user to execute the **STARTSESS** command and to call the **STARTSESS** and **ABORTSESS** intrinsics.

**prompt** The character(s) displayed at the terminal screen indicating that the system is ready for a command. The default MPE command interpreter's prompt is a colon (:). Other subsystems have different prompts.
**PUBgroup** A group created when an account is created whose files are usually accessible to all users within the account.

**PUB.SYS** The public group of the system account. **PUB.SYS** is the group in which programs and applications available to all users of the system reside.

**quiet mode** A session mode in which messages sent from other jobs or sessions to a terminal are not displayed. Users control quiet mode with the `SETMSG` command. To determine who is running quietly, execute the `SHOWJOB` command. Those sessions not receiving messages are indicated by the word `QUIET` in the third column of the listing. A `WARN` message from the system console overrides quiet mode, and should be used for all critical communication, such as informing the user of an impending system shutdown.

**remote access** Communication with a computer from a physically separate location.

**remote mode** A mode in which a terminal transmits and receives data from a remote (or host) computer.

**remote node** A node that is not physically located where you are and which you communicate with via data communication.

**remote session** A session initiated from an area physically separated from the computer.

**remote system** A computer system physically separated from other computer systems.

**remote system console** A terminal which provides remote access to the SPU as a system console or terminal session.

**remote terminal** A terminal that is indirectly connected to the computer, using a modem and telephone hook up.

**required parameter** A parameter that is required when entering a command or calling an intrinsic. In reference manuals, required parameters are surrounded by braces `{}`.

**resource** Any device or item used by a computer, for example I/O devices, disk files, or programs.

**resource identification number (RIN)** A number identifying a user-defined resource. Users are normally allowed to lock only a single RIN, which means they can have exclusive access to one resource at a time, such as an I/O device, a file, or a program.

**resource sharing** The most significant feature of a network. With resource sharing, elements at each node are accessible from other nodes in the network. These elements may include disk files, printers, magnetic tapes, terminals, and other programs.

**response center support (RCS)** An HP support agreement coverage that provides telephone assistance with software usage and problems.

**restore** The process of retrieving user files from SYSGEN (MPE/iX), SYSDUMP (MPE V/E), and STORE tapes or from serial disk and writing them to disk. Restoring is executed with
the RESTORE command.

**restricting data** A way of limiting access to data by grouping data into volumes, volume classes, and volume sets.

**run** To execute a program.

**run time** The environment in which a process is running or executing.

**save files capability (SF capability)** The capability allowing users to save the files they create. It is assigned by default to accounts and users.

**search path** A mechanism that controls which file is opened once a command is determined not to be a UDC nor an MPE command.

**sector** A portion of a track on a disk, and the smallest addressable piece of the disk. MPE-formatted disks use 128-word sectors (256 bytes).

**security** 1) The provisions that prevent unauthorized users from entering the system, accessing data, or using resources, programs, or capabilities. 2) The provisions included in MPE to protect the system from unauthorized use. MPE offers several methods of creating a secure environment. The most basic level of security includes organizing files into groups and users into accounts, either of which may be assigned a password. Security also refers to the ability to read, write, append, lock, and execute files, optionally assigned to accounts by the system manager and to groups and users by the account manager.

**segmented library (SL)** A file structure containing code segments that are shareable, general-use MPE, utility, and subsystem procedures not unique to a particular process. The three levels of SLs are group library SL, available to any user who can access the group; the public library SL, accessible to account users; and the system library SL, used by all system users.

**session** A mode in which the HP 3000 system is used interactively by entering commands and data through a terminal's keyboard and receiving immediate responses to input. A session is initiated with the **HELLO** command and is ended with the **BYE** command, or a second **HELLO** command that logs the user off the first session and onto another session.

**single-user mode** A DBEnvironment startup mode that allows only one DBE session to be active at a time.

**single-user state** A condition of the MPE/iX operating system in which the system console provides the only communication mechanism between the system and its user.

**single-user system** A system that can communicate with only one fixed terminal.

**soft reset** A reset that initializes a variety of terminal functions but does not reset the memory.

**software** A set of programs, instructions, rules, and procedures concerned with the operation of a computer.
spooling  An activity that permits the concurrent use of output devices and batch job input. (SPOOL is an acronym for simultaneous peripheral operations online.) If multiple users send output to a nonshareable device, such as a tape drive or line printer, their output is directed to spool files on disk. The output is printed on a priority basis as the printer becomes available and the users can proceed with other processing activities without waiting for the printer. Multiple batch jobs can also be submitted concurrently. The jobs are spooled to disk and executed according to the priority level specified by its submitter with the JOB command.

spool queue  Disk space where spool files are kept.

START  An initial system loader (ISL) utility and its options that is used to start the system from disk and to build the system data structures. This utility is used to recover from a hang or failure or to reboot the system after scheduled downtime. The START RECOVERY option is equivalent to the MPE V/E WARMSTART procedure, and the START NORECOVERY option is equivalent to the MPE V/E COOLSTART procedure.

$STDIN A system-defined file name that refers to the standard input device used to initiate a session or job; usually a terminal keyboard, card reader, or tape drive.

$STDLIST A system-defined file name indicating the standard job or session listing file corresponding to the particular input device being used. The listing device is usually a printer for batch jobs and a terminal for sessions.

storage device  A device (such as a disk pack, a disk cartridge, a flexible disk, magnetic tape, or cartridge tape) onto which data can be stored and subsequently retrieved.

STORE  1) The process of saving HP 3000 files to tape or serial disk. Storing is executed by using the STORE command. 2) A machine instruction that tells the CPU to take information from a register and put it in memory.

stream  To run batch jobs or data from a session or a job by using the MPE STREAM command. Once a job is streamed, it will execute as a separate process without requiring any further user input or supervision.

subsystem  A software program that performs a specific function, such as compiling programs, copying files, or editing text. Subsystems are executed by entering a single command at the colon prompt. At that point a different prompt is displayed, and a set of commands specific to the subsystem become available to the user. The user must explicitly exit the subsystem, usually by entering  E or EXIT.

sys account  A special account on the HP 3000 system, included with the system when it is first installed. It contains all MPE files (stored in the segmented library), supported subsystems, utility programs, and compilers.

system  A group of one or more CPUs that communicate through buses without the use of data communications software.

system abort  An orderly system failure. MPE tries to clean up by closing files and flushing buffers when possible.
**system configuration** The process of tailoring the operating system to accommodate the current physical layout and workload of a particular installation. The configuration is typically modified when new terminals, another line printer, or a disk drive are added. The system also can be reconfigured to assign new class names to existing devices, change the size of system tables or virtual memory, modify system logging, or alter any other configuration parameter.

**system console** 1) A workstation given a unique status by the operating system. It is used by the operator to execute specific commands for the purpose of managing sessions, jobs, and system resources. It is associated with all boot or system loader error messages, system error messages, and certain system status messages. 2) The terminal, usually logical device 20, that the system operator uses to monitor system activity, respond to resource requests, and send messages to user's terminals. The console (and its associated privileges and responsibilities) may be transferred to another logical device with the \texttt{CONSOLE} command.

**system control panel** A panel on the computer, containing control switches and status indicator lights.

**system-defined files** The files defined by MPE and made available to all users to indicate standard input or output devices, special temporary files, and files opened for output that do not perform an actual write operation.

**system disk** The disk volume mounted as logical device 1. It contains MPE, I/O configuration information, the account structure and file directory, and utilities and subsystems. It also contains an area reserved for virtual memory and can be used to store user files.

**system domain** An MPE V/E configuration for disk drives. System domain disks contain only shareable files, and remain online until the system is shut down. Because information about all system domain disks is entered into the system volume table, a system domain disk can be taken offline only by altering the I/O configuration during the SYSDUMP dialog and coldloading the new configuration. Equivalent to MPE/iX system volume.

**system failure** An internally detected error from which recovery is not possible. Rather than continue to operate, risking data integrity, the operating system halts the computer.

**system file directory** A directory maintained by MPE that records the name, group, and account of each permanent file on the system. The directory contains the size of each file, its location on the disk, who may access it, and other information.

**system generator (SYSGEN)** The MPE/iX utility used to create or modify system and I/O configurations; add, remove, and replace program files and boot files; replace system libraries; generate a full system backup; and create a boot tape to bring up an MPE/iX system with the new configuration. Equivalent to MPE V/E SYSDUMP and INITIAL utilities.

**system halt** The condition following a system shutdown or system failure, indicated by no response at the system console or to any user command.

**system load tape** A tape that contains the system load utilities, base system files, and
user files. It is generated with the SYSGEN utility. Equivalent to the MPE V/E coldload tape.

**system logging** The facility that records details of system resource requests in a series of log files on disk. The system manager or operator can select which system events to record such as job or session initiation or termination, program termination, file closing, file spooling completion, and system shutdown. I/O device failures are recorded in the system log and are used to detect problems before they interfere with overall system operation.

**system manager** The person who manages the computer installation, is responsible for creating accounts, and assigns capabilities and resource limits.

**system manager capability (SM capability)** A capability assigned to the user name and account to which the person designated as system manager logs on. The system manager is responsible for the structure, security, and overall operation of the system by establishing accounts and assigning capabilities and resource-use limits to each. The system manager assigns account manager and system supervisor capabilities to specific users.

**system processor unit (SPU)** The box in which all the processor boards and cards reside.

**system startup** A method of loading the MPE operating system from either disk or tape by bringing a subset of the MPE initiator program into memory.

**system supervisor capability (OP capability)** A capability assigned by the system manager to the system supervisor's user name and account. The system supervisor is responsible for performing backups, altering the system configuration, and in general, tuning the computer so that it continues to perform well and meet the needs of users.

**system volume** An MPE/iX system volume set. It contains a bootable system image and system configuration on its master volume. It is the only volume needed to load and start the system. It is always mounted and named MPEXL_SYSTEM_VOLUME_SET.

**temporary file** A file that exists only for the duration of a session or job.

**terminal** A hardware device connected to a computer and used for entering and receiving data. A terminal consists of a keyboard and a display screen.

**terminal type** Hewlett-Packard's classification for terminal models and their capabilities.

**throughput** A measurement of a computer system's speed and productivity.

**transaction** A logical unit of work.

**transaction logging** A method of tracking each unit of work to facilitate recovery from the abnormal end of transaction processing and system failures. A transaction log file is automatically generated and maintained by the transaction management facility. Files can be restored to a consistent state by copying the contents of the log file into the data file.

**transient space** Disk space used for temporary processes such as stacks and operating
system data structures.

**unit number** A part of an address used for devices. A number whose meaning is software-dependent and device-dependent, but which is often used to specify a particular disk drive in a device with a multidrive controller.

**UPDATE** 1) The MPE/iX ISL utility that performs a system load from tape. It replaces the current base system files on disk, and optionally replaces configuration files. The ISL UPDATE CONFIG option is equivalent to the MPE V/E COLDSTART procedure, and the UPDATE NOCONFIG option is equivalent to the MPE V/E UPDATE operation. 2) An MPE V/E coldload option that loads all files in the PUB group of the SYS account from the backup media. I/O configuration data, the directory, and user files are loaded from the system disk. UPDATE is typically used to install a new version of system software or to load MPE from another computer. Equivalent to the MPE/iX ISL UPDATE utility UPDATE NOCONFIG option.

**use communications subsystems capability (CS capability)** A capability assigned to accounts and users allowing access to the MPE communications subsystems.

**user command** A set of MPE/iX commands that a user has grouped together to perform a specific task. A user command is stored in a command file and does not have to be entered into a catalog. User commands are last in MPE’s search path for commands.

**user level security** The file access modes permitted the user. User level security must duplicate, or be a subset of, the file access permitted the user’s account and group.

**user logging** A facility that enables users and subsystems to record additions and modifications to files. If necessary, user logging also provides the means whereby recorded entries can be used to recover the files themselves.

**use volumes capability (UV capability)** A capability assigned at the account and user level allowing users to access private disk volumes.

**utility program** An operating system program that performs specific functions such as file copying, sorting, merging, memory dump analysis, or monitoring available disk space.

**variable** A value that can be changed, as opposed to a constant, usually represented by a letter or a group of alphanumeric characters.

**volume** A single disk pack. Each volume is a member of a volume set and contains a volume label, a label table, and a free space map.

**volume class** A class used for the allocation and restriction of disk space. A volume class is a logical subset or partition within a volume set and can bridge any number of physical member volumes of a volume set.

**volume name** The name given to a volume set or volume class with the NEWSET command. The name can be assigned only by a user with CV (create volume) capability, usually the system manager or account manager. The volume name is an ASCII character string of up to eight alphanumeric characters, beginning with an alphabetic character.
**volume number** The part of an address used for a device number whose meaning is software and device dependent, but is often used to specify a particular volume on a multivolume disk drive.

**volume set** A group of up to 255 related disk packs. One volume of the volume set must be designated as the master volume for the set. Each volume set is assigned a name by which it is identified and referenced. MPE/iX recognizes both system volume sets and nonsystem, or mountable, volume sets.

**volume set information table (VSIT)** A part of a master volume of a volume set containing the volume set configuration data.

**volume testing** The verification that the system continues to operate when loaded to each limit, the determination of what occurs when those limits are exceeded, and the determination of what occurs when the system is emptied after being in a full state.

**VOLUTIL** The MPE/iX utility that provides volume initialization and maintenance, volume label and membership inquiries, and volume space and sector status. Equivalent to the MPE V/E VINIT subsystem.

**welcome message** A file containing a greeting and important system information. It is created by the system operator and displayed each time a user logs onto the system.

**work file** A temporary file created when a text editor is invoked. A work file is a copy (in memory) of a permanent disk file. Any changes to the work file are lost unless the user saves the updated version of the file.

**write** To put information in a certain place.

**write-enable** To remove a disk's write-protection, allowing the disk to be written upon.

**write-protect** To protect stored data so that it cannot be overwritten.
Index

Symbols
$STDINX
  formal file designator, 98
$STDLIST
  formal file designator, 98

A
AAUTO
  SYSFILE configurator command, 169
ABOOT
  SYSFILE configurator command, 169
ABORTJOB
  MPE/iX command, 214
access port
  configuring, 187
access port (AP)
  support interface, 23
  testing, 192
  using, 183
access port commands, 185
  RS, 22
  TC, 22
  Using, 185
access port(AP)
  using, 23
account
  SYS, 97
accounts used to store configuration data, 97
ACLASS
  I/O Configurator command, 123
A-Class
  default configuration, 207
ACMSL
  SYSFILE Configurator command, 169
  SYSFILE configurator command, 170
activating the configurators
  SYSGEN utility, 108
adding a boot image to the SYSGEN tape, 169
adding a segment to a temporary copy of the CMSL, 169
adding an autoboot FILE to the SYSGEN tape, 169
adding classes in SYSGEN, 123
adding devices in SYSGEN, 123
adding file names to DUMP to TAPE, 170
adding I/O paths in SYSGEN, 123
adding objects to the SYSGEN tape, 169
ADEV
  I/O Configurator command, 123
alternate boot paths, 118
analysers cards, 213
AP error messages
  interpreting, 193
AP help facility
  using, 185
AP informational messages
  interpreting, 193
AP. See access port, 22
APATH
  I/O Configurator command, 123
ASPROG
  SYSFILE configurator command, 169, 170
autoboot and autosearch
  autoboot, 54
  autosearch, 54
  boot search, 54
  manual, 54
AUTOBOOT command, 31, 54
autoboot file, 18, 32
  listing current contents, 56
autoboot flag, 29
  enabling and disabling, 54
autoboot images
  deleting, 171
  replacing, 172
autobooting a Series 925, 32
autobooting a system, 18
autoexecute file, 18, 29, 32
AUTOSEARCH command, 54
autosearch flag
  enabling and disabling, 54
AVOL
  I/O Configurator command, 123

B
backing up the system, 80, 83, 85, 97
base configuration group, 97
  see configuration group, 97
base group
  specifying, 103
base system files, 60
BASEGROUP
  SYSGEN command, 103, 140, 223
basegroup, 97
  see configuration group, 97
boot command options, 36
boot error codes, 36, 39
boot images
  deleting, 171
  replacing, 173
boot path
  improper, 36
boot paths
alternate, 118
console, 118
primary, 118
boot tape, 19, 97
boot utilities. See ISL utilities, 60
booting sequences, 18
booting the system, 32
bus converter, 118

C
cache, 213
central bus, 118
see CTB, 118
changing the I/O configuration online, 128
channel adapter, 118
channel I/O bus, 118
CIO bus, 118
classes
adding in SYSGEN, 123
CLEAR
LOG configurator command, 140
MISC configurator command, 159
SYSGEN command, 97, 109
dearing configuration changes, 140, 159
SYSGEN utility, 109
CMSL, 169
adding a segment to, 170
replacing a segment of, 174
see compatibility mode segment library, 169
codes for ISL utility names, 206
command interpreter
using, 184
command syntax
SYSGEN utility, 103
commands
I/O configurator, 121
commands - I/O Configurator
ACLASS, 123
ADEV, 123
APATH, 123
AVOL, 123
DCLASS, 126
DDEV, 126
DPATH, 126
DVOL, 126
MADDRESS, 125
MCLASS, 125
MDEV, 125
MPATH, 125
MVOL, 125
commands - I/O Configurator
HELP, 119
LCLASS, 121
LDEV, 121
LPATH, 121
LVOL, 121
MADDRESS, 120
OCLOSE, 122
commands - ISL
ODE, 215
START, 98, 210
commands - LOG configurator
CLEAR, 140
EXIT, 141
HELP, 136
HOLD, 140
OCLOSE, 137
SHOW, 137
SLOG, 139
ULOG, 139
commands - MISC configurator
CLEAR, 159
DRIN, 151
EXIT, 162
help, 145
HOLD, 160
JOB, 152
LRIN, 153
OCLOSE, 153
RESOURCE, 154
SESSION, 156
SHOW, 148
STACK, 157
SYSTEM, 158
commands - MPE XL
REPLY, 226
commands - MPE/iX
ABORTJ OB, 214
HELLO, 214
JOBFENCE, 214
LIMIT, 214
SHOWJ OB, 214
TELL, 214
WARN, 214
commands - SYSFILE configurator
Index

AAUTO, 169
ABOOT, 169
ACMSL, 169, 170
ASPROG, 169, 170
DAUTO, 171
DBOOT, 171
dCMSL, 171, 172
dSPROG, 171, 172
help, 164
RAUTO, 172
RBOOT, 172, 173
RCAT, 172, 174
RCMSL, 172, 174
RDCC, 172, 175
RIPL, 172
RNMLIB, 172
RS PROG, 172
SHOW, 167
commands - SYSGEN
BASEGROUP, 103, 140, 223
CLEAR, 97, 109
EXIT, 116
HOLD, 109
IO, 224
KEEP, 97, 109, 140, 160, 223, 225
LOG, 136
MISC, 144
OCLOSE, 107, 111
PERMYES, 104
SHOW, 107
SYSFILE, 164
TAPE, 110, 225
commands in SYSSTART file, 62
commands, access port
RS, 22
TC, 22
compatibility mode segment library, 169
see CMSL, 169
CONFIG
UPDATE option, 78
CONFIG group, 97
CONFIG.SYS, 78, 207
configuration
disk drives, 226
retaining current, 80, 85
SCSI, 226
configuration changes
clearing, 140, 159
holding, 160
saving, 160
configuration data, 97
account used to store, 97
erasing changes, 97
modifying, 117, 118
storing, 19
configuration files
copying, 211
creating, 97
permanent, 97
temporary, 97
configuration group, 97
configuring a message catalog, 174
configuring job related limits, 152
configuring local devices, 117
configuring terminals, 19
configuring the console, 183
confirming potentially serious actions
SYSGEN utility, 104
console messages
sending, 189
console mode
returning from control mode, 187
column path, 118
construction I/O paths, 118
control mode
everting, 23, 184, 192
control mode (CM), 22
coprocessor, 213
copying default configuration file groups, 210
creating configuration files, 97
CTB, 118
see central bus, 118
CTRL B, 22

D
DAUTO
SYSFILE configurator command, 171
DBOOT
SYSFILE configurator command, 171
DCLASS
I/O Configurator command, 126
dCMSL
SYSFILE configurator command, 171, 172
dDEV
I/O Configurator command, 126
default configuration groups
A-Class, 207
ALINE925, 207, 210
ALINK925, 207, 210
ALINK932, 207
ALINK935, 207, 210
ALINK948, 207
ALINK958, 207
ALINK990, 207

Index
ALINK991, 207
ALINK992, 207
ALINK995, 207
CONF9X71, 207
CONF9X72, 207
CONF9X73, 207
CONF9X74, 207
CONF9X75, 207
CONF9X76, 207
CONF9X79, 207
CONF9X92, 207
CONF9X95, 207
CONF9X99, 207
CONF9X99, 207
CONFSCS0, 207
CONFE925, 207
CONFE926, 207
CONFE927, 207
CONFE928, 207
CONFE931, 207
CONFE932, 207
CONFE933, 207
CONFE934, 207
CONFE935, 207
CONFE936, 207
CONFE950, 207
CONFE951, 207
CONFE952, 207
CONFG920, 207
CONFG922, 207
CONFG925, 207
CONFG926, 207
CONFG927, 207
CONFG928, 207
CONFG929, 207
CONFG932, 207
CONFG933, 207
CONFG934, 207
CONFG935, 207
CONFG936, 207
CONFG950, 207
CONFG951, 207
CONFG952, 207
CONFG955, 207
CONFG958, 207
CONFG990, 207
CONFG991, 207
CONFG992, 207
CONFG995, 207
CONFG998, 207
CONFG999, 207
CONFSCS0, 207
CONFSCS1, 207
CONFSCS2, 207
CONFSCS3, 207
CONFSCS4, 207
CONFSCS5, 207
CONFSCS6, 207
default options
  INSTALL utility, 84
  START utility, 61
  UPDATE utility, 78
defining a network configuration file, 175
defining system parameters, 19
deleting autoboot images, 171
deleting boot images, 171
deleting classes in SYSGEN, 126
deleting compatibility mode segments from a SYSGEN tape, 172
deleting devices in SYSGEN, 126
deleting global resource identification numbers, 151
deleting I/O paths in SYSGEN, 126
deleting objects from the SYSGEN tape, 171
detecting system independent errors, 111
determining I/O paths, 118
device adapter, 118
devices
  listing, 30
  verifying, 213
disk boots, 50
displaying autoboot and autosearch settings, 55
displaying current file information, 167
displaying fastsize value, 55
displaying local RINs, 153
displaying state of configurators
  SYSGEN utility, 107
DPATH
  I/O Configurator command, 126
DRIN
  MISC configurator command, 151
DSPROG
  SYSFILE configurator command, 171, 172
DUMP, 22
dump listing, 197
dump sequence, 198
dump utility, 60, 86
default options, 86
SUBSET option, 86
DUMPAREA, 50
dumping a system, 60
DVOL
  I/O Configurator command, 126
E
  enabling and disabling the autoboot flag, 54
  enabling and disabling the autosearch flag, 54
  entering an MPE command from the LOG configurator, 141
  entering an MPE command from the MISC configurator, 161
  entering ODE, 214
  entering the LOG configurator, 136
  entering the MISC configurator, 144
  entering the SYSFILE configurator, 164
  entering the SYSGEN global module, 98, 114
  erasing configuration changes, 97
  error codes, 193
  error messages, 193
  escape characters
    entering, 193
EXIT
  LOG configurator command, 141
  MISC configurator command, 162
  SYSGEN command, 116
  exiting MAPPER, 219
  exiting MODE, 219
  exiting SYSGEN, 116
  exiting the LOG configurator, 141
  exiting the MISC configurator, 162
F
  fastsize, 50, 55
  file information
    displaying, 167
  first level commands, using, 102
  first-time installation, 82, 84
formal file designators
$STDINX, 98
$STDLIST, 98
SYSGIN, 98
SYSGOUT, 98
full system backup, 97

G
generating a boot tape, 110
global resource identification numbers
  deleting, 151
  see GRINS, 151
GRIN, 151
  see global resource identification numbers, 151
group
  CONFIG, 97
  GSP, 237
  GSP access port, 22
  GSP command mode, 239
  GSP configuration parameters, 238
  GSP security, 243

H
halting commands
  SYSGEN utility, 103
halting SYGEN command actions, 103
hard reset, 22
hardware clock, 57
HELLO
  MPE/iX command, 214
HELP facility
  LOG configurator, 136
help facility
  I/O configurator, 119
  MISC configurator, 145
  SYSGFILE configurator, 164
  SYSGEN global module, 100
HOLD
  LOG configurator command, 140
  MISC configurator command, 160
  SYSGEN command, 109
holding configuration changes, 109, 140, 160

I
I/O configuration
  modifying, 117, 118
I/O configuration changes
  online, 128
I/O configurator, 117, 118
  help facility, 119
I/O Configurator commands
ACLASS, 123
ADEV, 123
APATH, 123
AVOL, 123
DCLASS, 126
DDEV, 126
DPATH, 126
DVOL, 126
MADDRESS, 125
MCLASS, 125
MDEV, 125
MPATH, 125
MVOL, 125
I/O configurator commands
  HELP, 119
  LCLASS, 121
  LDEV, 121
  LPATH, 121
  LVOL, 121
  MADDRESS, 120
  OCLOSE, 122
I/O path
  alternate boot path, 30
  console boot path, 30
  definition, 30
  primary boot paths, 30
I/O paths
  determining, 118
identify test, 213
informational messages, 195
initial program load (IPL), 21, 31
initial system loader, 21, 98
input/output (I/O) configurator, 117, 118
input/output (IO) configurator, 97
input/output dependent code (IODC), 21, 32, 49
INSTALL, 22
  ISL utility, 210
  using to recover system, 82
INSTALL options, 83
INSTALL utility, 60, 82, 207
installing the operating system, 82
  preliminary steps, 84
interactively booting a system, 18
interrupting AUTOBOOT, 33
I/O
  SYSGEN command, 224
I/O configurator commands
  ADEV, 226
  APATH, 226
  EXIT, 225
  HOLD, 225
  LCLASS, 224
Index

LDEV, 224
LPATH, 224
OCLOSE, 224
IOCONFIG Utility, 128
IODC See input/output dependent code, 21
IOMAP
ISL utility, 213
IPL
See initial program load, 21
ISL, 21, 22, 29, 50, 54
ALTPATH, 50, 55
AUTOBOOT, 32, 50
AUTOSEARCH, 50
boot utilities, 92
CLKUTIL, 57
commands, 49
CONSPATH, 50, 55
defined, 18
DISPLAY, 50, 55
DUMP, 60, 86, 87
flag status, 54
HELP, 50
INSTALL, 60, 82, 207
IOMAP, 30, 55
LISTAUTOFL, 50, 56
LISTF, 50, 52
LS, 50
LSAUTOFL, 50, 56
options, 49
PRIMPATH, 50, 55
READNVM, 50, 57
READS, 50, 57
see initial system loader, 98
START, 61, 207
UPDATE, 60, 77
utilities, 18, 49
utility options, 93
ISL commands
ODE, 215
START, 98, 210
ISL HELP facility
using, 51
ISL settings
example, 55
series 950-980, 56
ISL utilities
INSTALL, 210
IOMAP, 213
listing, 52
START, 97
UPDATE, 210
ISL utility, 22
ISL utility names
codes for, 206
J
JOB
MISC configurator command, 152
JOBFENCE
MPE/iX command, 214
JOBFENCE command, 180
K
KEEP
SYSGEN command, 97, 109, 140, 160, 223, 225
keeping configuration changes, 109
keyword parameters
SYSGEN utility, 103
L
LCLASS
I/O configurator command, 121
I/O configurator command, 224
LDEV
I/O configurator command, 121
I/O configurator command, 224
LIF. See logical interchange format, 32
LIMIT
MPE/iX command, 214
LIMIT command, 180
limits
configuring job related, 152
setting session related, 156
listing autoboot and autosearch settings, 55
listing classes, 121
listing devices, 30, 121
listing paths, 121
listing RINS, 153
listing volumes, 121
LISTSPF command, 181
load listing, 197
loading a system, 60
local devices
configuring, 117
LOG
SYSGEN command, 136
LOG configurator, 135
entering an MPE command from, 141
exiting, 141
HELP facility, 136
see logging configurator, 135
LOG configurator commands
CLEAR, 140
EXIT, 141
HELP, 136
HOLD, 140
OCLOSE, 137
SHOW, 137
SLOG, 139
ULOG, 139
LOG values
showing, 137
logging
system, 135
user, 135
logging (LOG) configurator, 97, 135
see LOG configurator, 97, 135
logical interchange format (LIF), 32
logical interface format (LIF), 50
loopback test, 213
LPATH
I/O configurator command, 121
I/O configurator command, 224
LRIN
MISC configurator command, 153
LVOL
I/O configurator command, 121

M
MADDRESS
I/O Configurator command, 125
I/O configurator command, 120
MAPPER
exiting, 219
master consoles
changing, 193
MCLASS
I/O Configurator command, 125
MDEV
I/O Configurator command, 125
message catalog
configuring, 174
mid bus, 118
MISC
SYSGEN command, 144
MISC configurator, 143
entering an MPE command from, 161
extending, 162
help facility, 145
see miscellaneous configurator, 143
MISC configurator command
CLEAR, 159
EXIT, 162
HOLD, 160
JOB, 152
LRIN, 153
OCLOSE, 153
RESOURCE, 154
SESSION, 156
STACK, 157
SYSTEM, 158
MISC configurator commands
DRIN, 151
help, 145
SHOW, 148
miscellaneous (MISC) configurator, 97, 143
see MISC configurator, 97, 143
MMSAVE, 49, 50
modifying addresses in SYSGEN, 125
modifying classes in SYSGEN, 125
modifying devices in SYSGEN, 125
modifying I/O configurations, 117
modifying paths in SYSGEN, 125
modifying system parameters, 19
MPATH
I/O Configurator command, 125
MPE XL commands
REPLY, 226
MPE XL utilities
SYSGEN, 211
MPE/iX commands
ABORTJOB, 214
HELLO, 214
JOBFENCE, 214
LIMIT, 214
SHOWJOB, 214
TELL, 214
WARN, 214
MVOL
I/O Configurator command, 125

N
N-Class
default configuration, 207
NETCONTROL command, 181
network configuration file
defining, 175
replacing, 175
NOCONFIG
UPDATE option, 78
nonvolatile memory (NVM), 57, 203
NOSTART
INSTALL option, 83
UPDATE option, 78
NSCONTROL command, 181
NVM. See nonvolatile memory, 57
Index

remote support modem
  connecting to a session port, 190
removing configuration changes, 109
removing system programs from a SYSGEN tape, 172
repeated parameters
  SYSGEN utility, 103
replacing a CMSL segment, 174
replacing a network configuration file, 175
replacing autoboot images, 172
replacing boot images, 173
replacing objects on the SYSGEN tape, 172
replacing operating system, 77
REPLY
  MPE XL command, 226
reset, 22
resetting the system, 22
  hard reset, 22
  soft reset, 22
RESOURCE
  MISC configurator command, 154
resource allocations
  setting, 154
resource identification numbers
  deleting, 151
  see RIN, 151
resources
  allocating, 154
  retaining current configuration, 80, 85
RIN, 151
  listing, 153
  see resource identification numbers, 151
RIPL
  SYSFILE configurator command, 172
RNMLIB
  SYSFILE configurator command, 172
RS, 22
  access port command, 22
  hard reset, 22
RSPROG
  SYSFILE configurator command, 172
S
  saving configuration changes, 109, 140, 160
  scheduling an INSTALL, 83
  scheduling an UPDATE, 78
scripting PERMYES, 115
scrolling
  allowing, 193
  halting, 192
self-test, 22, 213
Series 920
<table>
<thead>
<tr>
<th>Default Configuration, 207</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series 922</td>
</tr>
<tr>
<td>default configuration, 207</td>
</tr>
<tr>
<td>Series 922LX</td>
</tr>
<tr>
<td>default configuration, 207</td>
</tr>
<tr>
<td>Series 922RX</td>
</tr>
<tr>
<td>default configuration, 207</td>
</tr>
<tr>
<td>Series 925</td>
</tr>
<tr>
<td>default configuration, 207</td>
</tr>
<tr>
<td>Series 925LX</td>
</tr>
<tr>
<td>default configuration, 207</td>
</tr>
<tr>
<td>Series 932</td>
</tr>
<tr>
<td>default configuration, 207</td>
</tr>
<tr>
<td>Series 935</td>
</tr>
<tr>
<td>default configuration, 207</td>
</tr>
<tr>
<td>Series 948</td>
</tr>
<tr>
<td>default configuration, 207</td>
</tr>
<tr>
<td>Series 949</td>
</tr>
<tr>
<td>default configuration, 207</td>
</tr>
<tr>
<td>Series 950</td>
</tr>
<tr>
<td>default configuration, 207</td>
</tr>
<tr>
<td>Series 958</td>
</tr>
<tr>
<td>default configuration, 207</td>
</tr>
<tr>
<td>Series 960</td>
</tr>
<tr>
<td>default configuration, 207</td>
</tr>
<tr>
<td>Series 980</td>
</tr>
<tr>
<td>default configuration, 207</td>
</tr>
<tr>
<td>Series 990</td>
</tr>
<tr>
<td>default configuration, 207</td>
</tr>
<tr>
<td>Series 991</td>
</tr>
<tr>
<td>default configuration, 207</td>
</tr>
<tr>
<td>Series 992</td>
</tr>
<tr>
<td>default configuration, 207</td>
</tr>
<tr>
<td>Series 995</td>
</tr>
<tr>
<td>default configuration, 207</td>
</tr>
<tr>
<td>Series 9X7</td>
</tr>
<tr>
<td>default configuration, 207</td>
</tr>
<tr>
<td>SESSION</td>
</tr>
<tr>
<td>MISC configurator command, 156 sessions</td>
</tr>
<tr>
<td>setting related limits, 156</td>
</tr>
<tr>
<td>setting resource allocations, 154</td>
</tr>
<tr>
<td>setting session related limits, 156</td>
</tr>
<tr>
<td>setting sizes of native mode and compatibility mode stacks, 157</td>
</tr>
<tr>
<td>setting strings and string parameters, 158</td>
</tr>
<tr>
<td>SHOW</td>
</tr>
<tr>
<td>LOG configurator command, 137</td>
</tr>
<tr>
<td>MISC configurator command, 148</td>
</tr>
<tr>
<td>SYSLFILE configurator command, 167</td>
</tr>
<tr>
<td>SYSGEN command, 107</td>
</tr>
<tr>
<td>SHOWDEV command, 180</td>
</tr>
<tr>
<td>showing current file information, 167</td>
</tr>
<tr>
<td>showing current LOG values, 137</td>
</tr>
<tr>
<td>showing the state of configurators, 107</td>
</tr>
<tr>
<td>showing values of current configurable items, 148</td>
</tr>
<tr>
<td>SHOWJOB</td>
</tr>
<tr>
<td>MPE/iX command, 214</td>
</tr>
<tr>
<td>shutdown</td>
</tr>
<tr>
<td>abbreviated list of steps, 20</td>
</tr>
<tr>
<td>definition, 20</td>
</tr>
<tr>
<td>SHUTDOWN command, 20, 181</td>
</tr>
<tr>
<td>shutdown listing, 197</td>
</tr>
<tr>
<td>shutdown sequence, 199</td>
</tr>
<tr>
<td>SHUTQ command, 181</td>
</tr>
<tr>
<td>shutting down the system, 20</td>
</tr>
<tr>
<td>SLOG</td>
</tr>
<tr>
<td>LOG configurator command, 139</td>
</tr>
<tr>
<td>SLT, 110, 111, 210</td>
</tr>
<tr>
<td>see system load tape, 210</td>
</tr>
<tr>
<td>soft reset, 22, 191</td>
</tr>
<tr>
<td>soft reset. See also TC, 22</td>
</tr>
<tr>
<td>software clock, 57</td>
</tr>
<tr>
<td>specifying the base group, 103</td>
</tr>
<tr>
<td>spool queues</td>
</tr>
<tr>
<td>shutting, 180</td>
</tr>
<tr>
<td>SPU hex status display</td>
</tr>
<tr>
<td>disabling, 191</td>
</tr>
<tr>
<td>enabling, 190</td>
</tr>
<tr>
<td>stable storage, 55</td>
</tr>
<tr>
<td>contents, 202</td>
</tr>
<tr>
<td>reading, 57, 201</td>
</tr>
<tr>
<td>STACK</td>
</tr>
<tr>
<td>MISC configurator command, 157</td>
</tr>
<tr>
<td>stacks</td>
</tr>
<tr>
<td>setting sizes of compatibility mode, 157</td>
</tr>
<tr>
<td>setting sizes of native mode, 157</td>
</tr>
<tr>
<td>START</td>
</tr>
<tr>
<td>INSTALL option, 83</td>
</tr>
<tr>
<td>ISL command, 98, 210</td>
</tr>
<tr>
<td>ISL utility, 97</td>
</tr>
<tr>
<td>UPDATE option, 78</td>
</tr>
<tr>
<td>START listing, 197</td>
</tr>
<tr>
<td>START options, 61</td>
</tr>
<tr>
<td>START sequence, 197</td>
</tr>
<tr>
<td>START utility, 61</td>
</tr>
<tr>
<td>starting a system, 60</td>
</tr>
<tr>
<td>startup</td>
</tr>
<tr>
<td>abbreviated list of steps, 18</td>
</tr>
<tr>
<td>autoboot vs. interactive, 18</td>
</tr>
<tr>
<td>definition, 18</td>
</tr>
<tr>
<td>overview, 21</td>
</tr>
<tr>
<td>startup listing, 197</td>
</tr>
</tbody>
</table>
status line display, 185
strings
setting, 158
strings parameters
setting, 158
subparameters
SYSGEN utility, 103
support, 50
SYS account, 97
SYSFIL.E
SYSGEN command, 164
SYSFILE configurator, 112, 163
entering, 164
help facility, 164
see system file configurator, 163
SYSFILE configurator commands
AAUTO, 169
ABOOT, 169
ACMSL, 169, 170
ASPROG, 169, 170
DAUTO, 171
DBOOT, 171
dCMSL, 171, 172
dSPROG, 171, 172
hep, 164
RAUTO, 172
RBOUTH, 172, 173
RCAT, 172, 174
RCMSL, 172, 174
RDCCL, 172, 175
RIPL, 172
RNMLIB, 172
RSPROG, 172
SHOW, 167
SYSGEN, 81, 85, 207
I/O map, 55
SYSGEN commands
BASEGROUP, 103, 140, 223
CLEAR, 97, 109
EXIT, 116
halting, 103
HOLD, 109
IO, 224
KEEP, 97, 109, 140, 160, 223, 225
LOG, 136
MISC, 144
OCLOSE, 107, 111
PERMYES, 104
SHOW, 107
SYSFIL.E, 164
TAPE, 110, 225
SYSGEN global module
help facility, 100
SYSGEN tape
deleting compatibility mode segments from, 172
deleting objects from, 171
placing objects on, 172
removing system programs from, 172
SYSGEN Utility
command syntax, 103
SYSGEN utility, 19, 211
activating, 98, 114
activating the configurators, 108
declearing configuration changes, 109
confirming serious actions, 104
displaying state of configurators, 107
entering the LOG configurator, 136
exiting, 116
generating a boot tape, 110
global module, 97
halting commands, 103
holding configuration changes, 109
keyword parameters, 103
positional parameters, 103
redirecting input and output, 114
repeated parameters, 103
saving configuration changes, 109
subparameters, 103
SYSFIL.E configurator, 112
using first level commands, 102
SYSGIN
formal file designator, 98
SYSGOUT
formal file designator, 98
SYSMAP, 55
SYSTART file, 62
example, 63
SYSTART file modules, 64
SYSTEM
MISC configurator command, 158
system configuration
adding a disk drive, 226
defined, 19
disk drives, 226
series 950 through 980, 222, 226
system dependent errors, 111
system failure
recovery from, 77, 80, 82
system file (SYSFIL.E) configurator, 97, 163
see SYSFIL.E configurator, 97, 163
system generator (SYSGEN) utility
see SYSGEN utility, 19
system independent errors, 111
system initialization, 118
system load, 60
system load tape, 210
see SLT, 210
system load tape (SLT), 207
system logging, 135, 139
system parameters
defining, 19
modifying, 19
system reload (INSTALL), 82
system shutdown
overview, 179
system shutdown. See shutdown, 20
system startup. See startup, 18
system status line
interpreting, 185
system testing, 213
identify, 213
loopback, 213
self-test, 213

T
TAPE
SYSGEN command, 110, 225
tape boots, 50
TC, 22
access port command, 22
See also transfer of control, 22
soft reset, 22
TELL command, 180, 214
temporary configuration files, 97
terminals
configuring, 19
testing the access port, 192
TLB, 213
see translation look aside buffer (TLB), 213
transfer of control, 22, 191
transfer of control. See also soft reset, 22
translation look aside buffer (TLB), 213

U
ULOG
LOG configurator command, 139
UPDATE, 22
ISL utility, 210
UPDATE options, 78
UPDATE utility, 60, 77
updating the operating system, 77
preliminary steps, 79
required steps, 79
user logging, 135, 139

using first level (global module) commands, 102
using I/O configurator commands, 120
using SYSGEN to copy configuration files, 211
using the help facility in SYSGEN’s global
module, 100
using the system generator (SYSGEN), 97
utilities
SYSGEN, 19
SYSGEN, activating, 98, 114
SYSGEN, global module, 97
utilities - ISL
INSTALL, 210
IOMAP, 213
START, 97
UPDATE, 210
utilities - MPE XL
SYSGEN, 211

V
verifying attached devices, 213

W
WARN
MPE/iX command, 214
WARN command, 181
WELCOME command, 180